• Title/Summary/Keyword: fuzzy almost (r,s)-open

Search Result 6, Processing Time 0.017 seconds

Fuzzy(r,s)-irresolute maps

  • Lee, Seok-Jong;Kim, Jin-Tae
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.1
    • /
    • pp.49-57
    • /
    • 2007
  • Using the idea of degree of openness and degree of nonopenness, Coker and Demirci [5] defined intuitionistic fuzzy topological spaces in Sostak's sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. M. N. Mukherjee and S. P. Sinha [10] introduced the concept of fuzzy irresolute maps on Chang's fuzzy topological spaces. In this paper, we introduce the concepts of fuzzy (r,s)-irresolute, fuzzy (r,s)-presemiopen, fuzzy almost (r,s)-open, and fuzzy weakly (r,s)-continuous maps on intuitionistic fuzzy topological spaces in Sostak's sense. Using the notions of fuzzy (r,s)-neighborhoods and fuzzy (r,s)-semineighborhoods of a given intuitionistic fuzzy points, characterizations of fuzzy (r,s)-irresolute maps are displayed. The relations among fuzzy (r,s)-irresolute maps, fuzzy (r,s)-continuous maps, fuzzy almost (r,s)-continuous maps, and fuzzy weakly (r,s)-cotinuous maps are discussed.

Fuzzy r-Generalized Almost Continuity on Fuzzy Generalized Topological Spaces (퍼지 일반화된 위상 공간에서 FUZZY r-GENERALIZED ALMOST CONTINUITY에 관한 연구)

  • Min, Won-Keun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.257-261
    • /
    • 2010
  • In this paper, we introduce the concept of fuzzy r-generalized almost continuous mapping and obtain some characterizations of such a mapping. In particular, we investigate characterizations for the fuzzy r-generalized almost continuity by using the concept of fuzzy r-generalized regular open sets.

FUZZY INTUITIONISTIC ALMOST (r, s)-CONTINUOUS MAPPINGS

  • Lee, Eun Pyo;Lee, Seung On
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.125-135
    • /
    • 2013
  • We introduce the concepts of fuzzy $(r,\;s)$-regular open sets and fuzzy almost $(r,\;s)$-continuous mappings on the intuitionistic fuzzy topological spaces in ${\check{S}}ostak^{\prime}s$ sense. Also we investigate the equivalent conditions of the fuzzy almost $(r,\;s)$-continuity.

ON L-FUZZY ALMOST PRECONTINUOUS FUNCTIONS

  • Min, Won-Keun
    • The Pure and Applied Mathematics
    • /
    • v.3 no.1
    • /
    • pp.53-58
    • /
    • 1996
  • In 1981, R . Badard introduced the notion of fuzzy pretopological spaces and their representation[1]. And in 1992, R. Badard, et al. introduced the L-fuzzy pretopological spaces and studied properties of continuity, open map, closed map, and homeomorphism in L-fuzzy pretopological spaces. In this paper we introduce and study the concepts of almost continuous functions and weakly pre-continuous functions on L-fpts's.(omitted)

  • PDF

Fuzzy r-Compactness on Fuzzy r-Minimal Spaces

  • Kim, Jung-Il;Min, Won-Keun;Yoo, Young-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.281-284
    • /
    • 2009
  • In [8], we introduced the concept of fuzzy r-minimal structure which is an extension of smooth fuzzy topological spaces and fuzzy topological spaces in Chang's sense. And we also introduced and studied the fuzzy r-M continuity. In this paper, we introduce the concepts of fuzzy r-minimal compactness on fuzzy r-minimal compactness and nearly fuzzy r-minimal compactness, almost fuzzy r-minimal spaces and investigate the relationships between fuzzy r-M continuous mappings and such types of fuzzy r-minimal compactness.

On Fuzzifying Nearly Compact Spaces

  • Zahran, A.M.;Sayed, O.R.;Abd-Allah, M. Azab;Mousa, A.K.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.296-302
    • /
    • 2010
  • This paper considers fuzzifying topologies, a special case of I-fuzzy topologies (bifuzzy topologies) introduced by Ying [16, (I)]. It investigates topological notions defined by means of regular open sets when these are planted into the frame-work of Ying's fuzzifying topological spaces (in ${\L}$ukasiewwicz fuzzy logic). The concept of fuzzifying nearly compact spaces is introduced and some of its properties are obtained. We use the finite intersection property to give a characterization of fuzzifying nearly compact spaces. Furthermore, we study the image of fuzzifying nearly compact spaces under fuzzifying completely continuous functions, fuzzifying almost continuity and fuzzifying R-map.