Fuzzy (r, s)-irresolute maps

Seok Jong Lee and Jin Tae Kim

Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea

Abstract

Using the idea of degree of openness and degree of nonopenness, Coker and Demirci [5] defined intuitionistic fuzzy topological spaces in Sostak's sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. M. N. Mukherjee and S. P. Sinha [10] introduced the concept of fuzzy irresolute maps on Chang's fuzzy topological spaces. In this paper, we introduce the concepts of fuzzy (r,s)-irresolute, fuzzy (r,s)-presemiopen, fuzzy almost (r,s)-open, and fuzzy weakly (r,s)-continuous maps on intuitionistic fuzzy topological spaces in Sostak's sense. Using the notions of fuzzy (r,s)-neighborhoods and fuzzy (r,s)-semineighborhoods of a given intuitionistic fuzzy points, characterizations of fuzzy (r,s)-irresolute maps are displayed. The relations among fuzzy (r,s)-irresolute maps, fuzzy (r,s)-continuous maps, fuzzy almost (r,s)-continuous maps, and fuzzy weakly (r,s)-cotinuous maps are discussed.

Key words: fuzzy (r, s)-continuous, fuzzy almost (r, s)-continuous, fuzzy (r, s)-irresolute, fuzzy (r, s)-presemiopen, fuzzy almost (r, s)-continuous

1. Introduction

The concept of fuzzy set was introduced by Zadeh [14]. Chang [2] defined fuzzy topological spaces. These spaces and its generalizations are later studied by several authors, one of which, developed by Sostak [13], used the idea of degree of openness. This type of generalization of fuzzy topological spaces was later rephrased by Chattopadhyay and his colleagues [3], and by Ramadan [11].

As a generalization of fuzzy sets, the concept of intuitionistic fuzzy sets was introduced by Atanassov [1]. Recently, Coker and his colleagues [4, 6] introduced intuitionistic fuzzy topological spaces using intuitionistic fuzzy sets. Using the idea of degree of openness and degree of nonopenness, Coker and Demirci [5] defined intuitionistic fuzzy topological spaces in Sostak's sense as a generalization of smooth topological spaces and intuitionistic fuzzy topological spaces. M. N. Mukherjee and S. P. Sinha [10] introduced the concept of fuzzy irresolute maps on Chang's fuzzy topological spaces. Jun and his colleagues [7] introduced various kinds of fuzzy mappings on intuitionistic fuzzy topological spaces.

In this paper, we introduce the concepts of fuzzy (r,s)-irresolute, fuzzy (r,s)-presemiopen, fuzzy almost (r,s)-open, and fuzzy weakly (r,s)-continuous maps on intuitionistic fuzzy topological spaces in Sostak's sense. Using the notions of fuzzy (r,s)-neighborhoods and fuzzy (r,s)-semineighborhoods of a given intuitionistic fuzzy points, characterizations of fuzzy (r,s)-irresolute maps

are displayed. The relations among fuzzy (r,s)-irresolute maps, fuzzy (r,s)-continuous maps, fuzzy almost (r,s)-continuous maps, and fuzzy weakly (r,s)-cotinuous maps are discussed.

2. Preliminaries

We will denote the unit interval [0,1] of the real line by I. A member μ of I^X is called a fuzzy set in X. For any $\mu \in I^X$, μ^c denotes the complement $1-\mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Let X be a nonempty set. An *intuitionistic fuzzy set* A is an ordered pair

$$A = (\mu_A, \gamma_A)$$

where the functions $\mu_A: X \to I$ and $\gamma_A: X \to I$ denote the degree of membership and the degree of nonmembership, respectively and $\mu_A + \gamma_A \leq 1$. Obviously every fuzzy set μ in X is an intuitionistic fuzzy set of the form $(\mu, \tilde{1} - \mu)$.

Definition 2.1 ([1]) Let $A = (\mu_A, \gamma_A)$ and $B = (\mu_B, \gamma_B)$ be intuitionistic fuzzy sets in X. Then

(1)
$$A \subseteq B$$
 iff $\mu_A \le \mu_B$ and $\gamma_A \ge \gamma_B$.

- (2) A = B iff $A \subseteq B$ and $B \subseteq A$.
- (3) $A^c = (\gamma_A, \mu_A).$
- (4) $A \cap B = (\mu_A \wedge \mu_B, \gamma_A \vee \gamma_B).$
- (5) $A \cup B = (\mu_A \vee \mu_B, \gamma_A \wedge \gamma_B).$
- (6) $\underline{0} = (\tilde{0}, \tilde{1})$ and $\underline{1} = (\tilde{1}, \tilde{0})$.

Let f be a map from a set X to a set Y. Let $A = (\mu_A, \gamma_A)$ be an intuitionistic fuzzy set in X and $B = (\mu_B, \gamma_B)$ an intuitionistic fuzzy set in Y. Then

(1) The image of A under f, denoted by f(A), is an intuitionistic fuzzy set in Y defined by

$$f(A) = (f(\mu_A), \tilde{1} - f(\tilde{1} - \gamma_A)).$$

(2) The inverse image of B under f, denoted by $f^{-1}(B)$, is an intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = (f^{-1}(\mu_B), f^{-1}(\gamma_B)).$$

A smooth fuzzy topology on X is a map $T: I^X \to I$ which satisfies the following properties:

- (1) $T(\tilde{0}) = T(\tilde{1}) = 1$.
- (2) $T(\mu_1 \wedge \mu_2) \geq T(\mu_1) \wedge T(\mu_2)$.
- (3) $T(\bigvee \mu_i) \ge \bigwedge T(\mu_i)$.

The pair (X, T) is called a *smooth fuzzy topological space*.

An intuitionistic fuzzy topology on X is a family T of intuitionistic fuzzy sets in X which satisfies the following properties:

- (1) $0, 1 \in T$.
- (2) If $A_1, A_2 \in T$, then $A_1 \cap A_2 \in T$.
- (3) If $A_i \in T$ for each i, then $\bigcup A_i \in T$.

The pair (X,T) is called an *intuitionistic fuzzy topological* space.

Let I(X) be a family of all intuitionistic fuzzy sets in X and let $I \otimes I$ be the set of the pair (r,s) such that $r,s \in I$ and $r+s \leq 1$.

Definition 2.2 ([5]) Let X be a nonempty set. An *intuitionistic fuzzy topology in Sostak's sense*(SoIFT for short) $\mathcal{T}=(\mathcal{T}_1,\mathcal{T}_2)$ on X is a map $\mathcal{T}:I(X)\to I\otimes I$ which satisfies the following properties :

(1)
$$T_1(\underline{0}) = T_1(\underline{1}) = 1$$
 and $T_2(\underline{0}) = T_2(\underline{1}) = 0$.

- (2) $\mathcal{T}_1(A \cap B) \geq \mathcal{T}_1(A) \wedge \mathcal{T}_1(B)$ and $\mathcal{T}_2(A \cap B) \leq \mathcal{T}_2(A) \vee \mathcal{T}_2(B)$.
- (3) $\mathcal{T}_1(\bigcup A_i) \ge \bigwedge \mathcal{T}_1(A_i)$ and $\mathcal{T}_2(\bigcup A_i) \le \bigvee \mathcal{T}_2(A_i)$.

The $(X, T) = (X, T_1, T_2)$ is said to be an *intuitionistic fuzzy topological space in Sostak's sense*(SoIFTS for short). Also, we call $T_1(A)$ a gradation of openness of A and $T_2(A)$ a gradation of nonopenness of A.

Definition 2.3 ([8]) Let A be an intuitionistic fuzzy set in SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-open if $\mathcal{T}_1(A) \geq r$ and $\mathcal{T}_2(A) \leq s$,
- (2) fuzzy (r, s)-closed if $\mathcal{T}_1(A^c) \geq r$ and $\mathcal{T}_2(A^c) \leq s$.

Definition 2.4 ([8]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS. For each $(r,s) \in I \otimes I$ and for each $A \in I(X)$, the *fuzzy* (r,s)-interior is defined by

$$= \{ | \{ B \in I(X) \mid B \subseteq A, B \text{ is fuzzy } (r, s) \text{-open} \}$$

and the fuzzy (r, s)-closure is defined by

$$=\bigcap\{B\in I(X)\mid A\subseteq B,\ B\text{ is fuzzy }(r,s)\text{-closed}\}.$$

Lemma 2.5 ([8]) For an intuitionistic fuzzy set A in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$,

- (1) $int(A, r, s)^c = cl(A^c, r, s)$.
- (2) $cl(A, r, s)^c = int(A^c, r, s)$.

Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be an intuitionistic fuzzy topological space in Sostak's sense. Then it is easy to see that for each $(r,s) \in I \otimes I$, the family $\mathcal{T}_{(r,s)}$ defined by

$$\mathcal{T}_{(r,s)} = \{ A \in I(X) \mid \mathcal{T}_1(A) \ge r \text{ and } \mathcal{T}_2(A) \le s \}$$

is an intuitionistic fuzzy topology on X.

Let (X,T) be an intuitionistic fuzzy topological space and $(r,s)\in I\otimes I.$ Then the map $T^{(r,s)}:I(X)\to I\otimes I$ defined by

$$T^{(r.s)}(A) = \begin{cases} (1,0) & \text{if } A = \underline{0},\underline{1}, \\ (r,s) & \text{if } A \in T - \{\underline{0},\underline{1}\}, \\ (0,1) & \text{otherwise} \end{cases}$$

becomes an intuitionistic fuzzy topology in Sostak's sense on X.

Let $\alpha, \beta \in [0,1]$ with $\alpha+\beta \leq 1$. An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X is an intuitionistic fuzzy set in X defined by

$$x_{(\alpha,\beta)}(y) = \begin{cases} (\alpha,\beta) & \text{if } y = x, \\ (0,1) & \text{if } y \neq x. \end{cases}$$

In this case, x is called the *support* of $x_{(\alpha,\beta)}$, α the *value* of $x_{(\alpha,\beta)}$, and β the *nonvalue* of $x_{(\alpha,\beta)}$. An intuitionistic fuzzy point $x_{(\alpha,\beta)}$ is said to *belong* to an intuitionistic fuzzy set $A=(\mu_A,\gamma_A)$ in X, denoted by $x_{(\alpha,\beta)}\in A$, if $\mu_A(x)\geq \alpha$ and $\gamma_A(x)\leq \beta$. An intuitionistic fuzzy set A in X is the union of all intuitionistic fuzzy points which belong to A.

Definition 2.6 ([8]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X,\mathcal{T}_1,\mathcal{T}_2)$ and $(r,s)\in I\otimes I$. Then A is said to be

- (1) fuzzy (r, s)-semiopen if there is a fuzzy (r, s)-open set B in X such that $B \subseteq A \subseteq \operatorname{cl}(B, r, s)$,
- (2) fuzzy (r,s)-semiclosed if there is a fuzzy (r,s)-closed set B in X such that $\operatorname{int}(B,r,s) \subseteq A \subseteq B$.

Theorem 2.7 ([8]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is a fuzzy (r, s)-semiopen set.
- (2) A^c is a fuzzy (r, s)-semiclosed set.
- (3) $\operatorname{cl}(\operatorname{int}(A, r, s), r, s) \supseteq A$.
- (4) $\operatorname{int}(\operatorname{cl}(A^c, r, s), r, s) \subseteq A^c$.

Theorem 2.8 ([8]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS and $(r, s) \in I \otimes I$.

- (1) If $\{A_i\}$ is a family of fuzzy (r, s)-semiopen sets in X, then $\bigcup A_i$ is fuzzy (r, s)-semiopen.
- (2) If $\{A_i\}$ is a family of fuzzy (r, s)-semiclosed sets in X, then $\bigcap A_i$ is fuzzy (r, s)-semiclosed.

Definition 2.9 ([8]) Let $(X, \mathcal{T}_1, \mathcal{T}_2)$ be a SoIFTS. For each $(r,s) \in I \otimes I$ and for each $A \in I(X)$, the *fuzzy* (r,s)-semiinterior is defined by

$$=\bigcup\{B\in I(X)\mid B\subseteq A,\ B\text{ is fuzzy }(r,s)\text{-semiopen}\}$$

and the fuzzy (r, s)-semiclosure is defined by

scl(A, r, s)

 $=\bigcap\{B\in I(X)\mid A\subseteq B,\ B \text{ is fuzzy } (r,s)\text{-semiclosed}\}.$

Definition 2.10 ([12]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then A is said to be

- (1) fuzzy (r, s)-regular open if int(cl(A, r, s), r, s) = A,
- (2) fuzzy (r, s)-regular closed if cl(int(A, r, s), r, s) = A.

Theorem 2.11 ([12]) Let A be an intuitionistic fuzzy set in a SoIFTS $(X, \mathcal{T}_1, \mathcal{T}_2)$ and $(r, s) \in I \otimes I$. Then the following statements are equivalent:

- (1) A is fuzzy (r, s)-regular open.
- (2) A^c is fuzzy (r, s)-regular closed.

Theorem 2.12 ([12]) (1) The fuzzy (r,s)-closure of a fuzzy (r,s)-open set is fuzzy (r,s)-regular closed for each $(r,s) \in I \otimes I$.

(2) The fuzzy (r, s)-interior of a fuzzy (r, s)-closed set is fuzzy (r, s)-regular open for each $(r, s) \in I \otimes I$.

Definition 2.13 ([9, 12]) Let $f:(X, \mathcal{T}_1, \mathcal{T}_2) \rightarrow (Y, \mathcal{U}_1, \mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r, s) \in I \otimes I$. Then f is called

- (1) a fuzzy (r, s)-continuous map if $f^{-1}(B)$ is a fuzzy (r, s)-open set in X for each fuzzy (r, s)-open set B in Y.
- (2) a fuzzy (r, s)-open map if f(A) is a fuzzy (r, s)-open set in Y for each fuzzy (r, s)-open set A in X,
- (3) a fuzzy (r,s)-semicontinuous map if $f^{-1}(B)$ is a fuzzy (r,s)-semiopen set in X for each fuzzy (r,s)-open set B in Y,
- (4) a fuzzy (r, s)-semiopen map if f(A) is a fuzzy (r, s)-semiopen set in Y for each fuzzy (r, s)-open set A in X,
- (5) a fuzzy almost (r, s)-continuous map if $f^{-1}(B)$ is a fuzzy (r, s)-open set in X for each fuzzy (r, s)-regular open set B in Y.

Theorem 2.14 ([12]) Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then the following statements are equivalent

(1) f is a fuzzy almost (r, s)-continuous map.

- (2) $f^{-1}(B) \subseteq \inf(f^{-1}(\inf(\operatorname{cl}(B,r,s),r,s)),r,s)$ for each fuzzy (r,s)-open set B in Y.
- (3) $\operatorname{cl}(f^{-1}(\operatorname{cl}(\operatorname{int}(B,r,s),r,s)),r,s)\subseteq f^{-1}(B)$ for each fuzzy (r,s)-closed set B in Y.

Theorem 2.15 ([8]) Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map and $(r,s)\in I\otimes I$. Then the following statements are equivalent:

- (1) f is a fuzzy (r, s)-semicontinuous map.
- (2) $f^{-1}(B)$ is a fuzzy (r, s)-semiclosed set in X for each fuzzy (r, s)-closed set B in Y.
- (3) $\operatorname{int}(\operatorname{cl}(f^{-1}(B),r,s),r,s) \subseteq f^{-1}(\operatorname{cl}(B,r,s))$ for each intuitionistic fuzzy set B in Y.
- (4) $f(\operatorname{int}(\operatorname{cl}(A,r,s),r,s)) \subseteq \operatorname{cl}(f(A),r,s)$ for each intuitionistic fuzzy set A in X.

3. Fuzzy (r, s)-irresolute maps

Now, we define the notions of fuzzy (r,s)-irresolute, fuzzy (r,s)-presemiopen, fuzzy almost (r,s)-open, and fuzzy weakly (r,s)-continuous maps on intuitionistic fuzzy topological spaces in Sostak's sense, and then we investigate some of their properties.

Definition 3.1 Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is called

- (1) a fuzzy (r,s)-irresolute map if $f^{-1}(B)$ is a fuzzy (r,s)-semiopen set in X for each fuzzy (r,s)-semiopen set B in Y,
- (2) a fuzzy (r,s)-presemiopen map if f(A) is a fuzzy (r,s)-semiopen set in Y for each fuzzy (r,s)-semiopen set A in X,
- (3) a fuzzy almost (r, s)-open map if f(A) is a fuzzy (r, s)-open set in Y for each fuzzy (r, s)-regular open set A in X,
- (4) a fuzzy weakly (r,s)-continuous map if for every fuzzy (r,s)-open set B in Y, $f^{-1}(B) \subseteq \inf(f^{-1}(\operatorname{cl}(B,r,s)),r,s)$.

Definition 3.2 Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in a SoIFTS $(X,\mathcal{T}_1,\mathcal{T}_2)$ and $(r,s)\in I\otimes I$. Then an intuitionistic fuzzy set A in X is called

- (1) a fuzzy (r,s)-neighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-open set B in X such that $x_{(\alpha,\beta)} \in B \subseteq A$.
- (2) a fuzzy (r,s)-semineighborhood of $x_{(\alpha,\beta)}$ if there is a fuzzy (r,s)-semiopen set B in X such that $x_{(\alpha,\beta)} \in B \subset A$.

Theorem 3.3 Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then the following statements are equivalent:

- (1) f is fuzzy (r, s)-irresolute.
- (2) $f^{-1}(B)$ is a fuzzy (r,s)-semiclosed set in X for each fuzzy (r,s)-semiclosed set B in Y.
- (3) For every intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and every fuzzy (r,s)-semiopen set B in Y such that $f(x_{(\alpha,\beta)}) \in B$, there is a fuzzy (r,s)-semiopen set A in X such that $x_{(\alpha,\beta)} \in A$ and $f(A) \subseteq B$.
- (4) For every intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and every fuzzy (r,s)-semineighborhood B of $f(x_{(\alpha,\beta)})$ in Y, $f^{-1}(B)$ is a fuzzy (r,s)-semineighborhood of $x_{(\alpha,\beta)}$ in X.
- (5) For every intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and every fuzzy (r,s)-semineighborhood B of $f(x_{(\alpha,\beta)})$ in Y, there is a fuzzy (r,s)-semineighborhood A of $x_{(\alpha,\beta)}$ in X such that $f(A) \subseteq B$.
- (6) $f(\operatorname{scl}(A, r, s)) \subseteq \operatorname{scl}(f(A), r, s)$ for each intuitionistic fuzzy set A in X.
- (7) $\mathrm{scl}(f^{-1}(B),r,s)\subseteq f^{-1}(\mathrm{scl}(B,r,s))$ for each intuitionistic fuzzy set B in Y.

Proof. $(1) \Leftrightarrow (2)$ It is obvious.

 $(3)\Rightarrow (1)$ Let B be a fuzzy (r,s)-semiopen set in Y and $x_{(\alpha,\beta)}$ an intuitionistic fuzzy point in X such that $x_{(\alpha,\beta)}\in f^{-1}(B)$. Then $f(x_{(\alpha,\beta)})\in B$. Thus there is a fuzzy (r,s)-semiopen set A in X such that $x_{(\alpha,\beta)}\in A$ and $f(A)\subseteq B$. Then $A\subseteq f^{-1}(B)$. Thus

$$x_{(\alpha,\beta)} \in A \subseteq \operatorname{cl}(\operatorname{int}(A,r,s),r,s)$$

 $\subseteq \operatorname{cl}(\operatorname{int}(f^{-1}(B),r,s),r,s).$

Hence

$$\begin{array}{lcl} f^{-1}(B) & = & \bigcup \{x_{(\alpha,\beta)} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\} \\ & \subseteq & \mathrm{cl}(\mathrm{int}(f^{-1}(B),r,s),r,s). \end{array}$$

Therefore f is a fuzzy (r,s)-irresolute map. $(1) \Rightarrow (4)$ Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-semineighborhood of $f(x_{(\alpha,\beta)})$ in Y. Then there is a fuzzy (r,s)-semiopen set C in Y such that $f(x_{(\alpha,\beta)}) \in C \subseteq B$ and hence $x_{(\alpha,\beta)} \in f^{-1}(C) \subseteq B$ $f^{-1}(B)$. Since f is fuzzy (r,s)-irresolute, $f^{-1}(C)$ is a fuzzy (r,s)-semiopen set in X. Thus $f^{-1}(B)$ is a fuzzy (r,s)-semineighborhood of $x_{(\alpha,\beta)}$.

(4) \Rightarrow (5) Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-semineighborhood of $f(x_{(\alpha,\beta)})$ in Y. By (4), $f^{-1}(B)$ is a fuzzy (r,s)-semineighborhood of $x_{(\alpha,\beta)}$ in X. Let $f^{-1}(B) = A$. Then $f(A) = f(f^{-1}(B)) \subseteq B$.

(5) \Rightarrow (3) Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-semiopen set in Y such that $f(x_{(\alpha,\beta)}) \in B$. Then since B is a fuzzy (r,s)-semineighborhood of $f(x_{(\alpha,\beta)})$, by (5), there is a fuzzy (r,s)-semineighborhood A of $x_{(\alpha,\beta)}$ in X such that $f(A) \subseteq B$. Then there is a fuzzy (r,s)-semiopen set C in X such that $x_{(\alpha,\beta)} \in C \subseteq A$ and hence $f(C) \subseteq f(A) \subseteq B$.

(2) \Rightarrow (6) Let A be an intuitionistic fuzzy set in X. Since $\mathrm{scl}(f(A),r,s)$ is fuzzy (r,s)-semiclosed in Y, by (2), $f^{-1}(\mathrm{scl}(f(A),r,s))$ is a fuzzy (r,s)-semiclosed set in X. Since $f(A)\subseteq\mathrm{scl}(f(A),r,s)$, we have $A\subseteq f^{-1}(f(A))\subseteq f^{-1}(\mathrm{scl}(f(A),r,s))$. Hence

$$\begin{split} \operatorname{scl}(A,r,s) &\subseteq & \operatorname{scl}(f^{-1}(\operatorname{scl}(f(A),r,s)),r,s) \\ &= & f^{-1}(\operatorname{scl}(f(A),r,s)). \end{split}$$

Therefore

$$\begin{array}{lcl} f(\mathrm{scl}(A,r,s)) & \subseteq & f(f^{-1}(\mathrm{scl}(f(A),r,s))) \\ & \subset & \mathrm{scl}(f(A),r,s). \end{array}$$

(6) \Rightarrow (2) Let B be a fuzzy (r, s)-semiclosed set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. By (6),

$$\begin{array}{ccc} f(\mathrm{scl}(f^{-1}(B),r,s)) & \subseteq & \mathrm{scl}(f(f^{-1}(B)),r,s) \\ & \subseteq & \mathrm{scl}(B,r,s) = B. \end{array}$$

Thus $\operatorname{scl}(f^{-1}(B), r, s) \subseteq f^{-1}(f(\operatorname{scl}(f^{-1}(B), r, s))) \subseteq f^{-1}(B)$. Hence $f^{-1}(B) = \operatorname{scl}(f^{-1}(B), r, s)$. Therefore $f^{-1}(B)$ is a fuzzy (r, s)-semicodes set in X.

(6) \Rightarrow (7) Let B be an intuitionistic fuzzy set in Y. Then $f^{-1}(B)$ is an intuitionistic fuzzy set in X. By (6),

$$\begin{array}{ccc} f(\operatorname{scl}(f^{-1}(B),r,s)) & \subseteq & \operatorname{scl}(f(f^{-1}(B)),r,s) \\ & \subseteq & \operatorname{scl}(B,r,s). \end{array}$$

Hence

 $(7) \Rightarrow (6)$ Let A be an intuitionistic fuzzy set in X. Then f(A) is an intuitionistic fuzzy set in Y. By (7),

$$\operatorname{scl}(A, r, s) \subseteq \operatorname{scl}(f^{-1}(f(A)), r, s)$$
$$\subseteq f^{-1}(\operatorname{scl}(f(A), r, s)).$$

Hence

$$\begin{array}{lcl} f(\mathrm{scl}(A,r,s)) & \subseteq & f(f^{-1}(\mathrm{scl}(f(A),r,s))) \\ & \subset & \mathrm{scl}(f(A),r,s). \end{array}$$

Lemma 3.4 Let $f:(X,\mathcal{T}_1,\mathcal{T}_2)\to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and let A and B be intuitionistic fuzzy sets in X and Y, respectively. Then $f^{-1}(B)\subseteq A$ if and only if $(f(A^c))^c\supseteq B$.

Proof.

$$f^{-1}(B) \subseteq A \quad \Leftrightarrow \quad f^{-1}(B^c) = f^{-1}(B)^c \supseteq A^c$$
$$\Leftrightarrow \quad f(A^c) \subseteq f(f^{-1}(B^c)) \subseteq B^c$$
$$\Leftrightarrow \quad (f(A^c))^c \supseteq B.$$

Theorem 3.5 Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is fuzzy almost (r,s)-open if and only if for each intuitionistic fuzzy set B in Y and each fuzzy (r,s)-regular closed set A in X such that $f^{-1}(B) \subseteq A$, there is a fuzzy (r,s)-closed set C in Y such that $B \subseteq C$ and $f^{-1}(C) \subseteq A$.

Proof. Let f be a fuzzy almost (r,s)-open map, B an intuitionistic fuzzy set in Y, and A a fuzzy (r,s)-regular closed set in X such that $f^{-1}(B) \subseteq A$. Let $C = (f(A^c))^c$. Then C is a fuzzy (r,s)-closed set in Y and by Lemma 3.4, $B \subseteq C$. Also, we have

$$\begin{split} f^{-1}(C) &= f^{-1}((f(A^c))^c) &= (f^{-1}(f(A^c)))^c \\ &\subseteq (A^c)^c = A. \end{split}$$

Conversely, let A be a fuzzy (r, s)-regular open set in X. Let $B = f(A)^c$ and $D = A^c$. Then we have

$$f^{-1}(B) = f^{-1}(f(A)^c) = (f^{-1}(f(A)))^c \subseteq A^c = D.$$

By hypothesis, there is a fuzzy (r,s)-closed set C in Y such that $f(A)^c = B \subseteq C$ and $f^{-1}(C) \subseteq D = A^c$. Then $A \subseteq f^{-1}(C)^c = f^{-1}(C^c)$. Hence $f(A) = C^c$. Therefore f(A) is a fuzzy (r,s)-open set in Y and consequently f is a fuzzy almost (r,s)-open map.

Theorem 3.6 Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is a fuzzy almost (r,s)-open map if and only if $f(\operatorname{int}(A,r,s)) \subseteq \operatorname{int}(f(A),r,s)$ for each fuzzy (r,s)-semiclosed set A in X.

Proof. Let f be a fuzzy almost (r,s)-open map and A a fuzzy (r,s)-semiclosed set in X. Then $\operatorname{int}(A,r,s)\subseteq\operatorname{int}(\operatorname{cl}(A,r,s),r,s)\subseteq A$. Note that $\operatorname{cl}(A,r,s)$ is a fuzzy (r,s)-closed set in X. By Theorem 2.12 (2), $\operatorname{int}(\operatorname{cl}(A,r,s),r,s)$ is a fuzzy (r,s)-regular open set in X. Since f is a fuzzy almost (r,s)-open map,

 $f(\operatorname{int}(\operatorname{cl}(A,r,s),r,s))$ is a fuzzy (r,s)-open set in Y . Thus we have

$$\begin{array}{ll} f(\operatorname{int}(A,r,s)) & \subseteq & f(\operatorname{int}(\operatorname{cl}(A,r,s),r,s)) \\ & = & \operatorname{int}(f(\operatorname{int}(\operatorname{cl}(A,r,s),r,s)),r,s) \\ & \subseteq & \operatorname{int}(f(A),r,s). \end{array}$$

Conversely, let A be a fuzzy (r,s)-regular open set in X. Then A is fuzzy (r,s)-open and hence $\operatorname{int}(A,r,s)=A$. Since $\operatorname{int}(\operatorname{cl}(A,r,s),r,s)=A$, A is a fuzzy (r,s)-semiclosed set. So

$$f(A) = f(\operatorname{int}(A, r, s)) \subseteq \operatorname{int}(f(A), r, s) \subseteq f(A).$$

Thus f(A) = int(f(A), r, s) and so f(A) is fuzzy (r, s)-open in Y. Hence f is a fuzzy almost (r, s)-open map.

Theorem 3.7 Let $f:(X,\mathcal{T}_1,\mathcal{T}_2) \to (Y,\mathcal{U}_1,\mathcal{U}_2)$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. Then f is a fuzzy almost (r,s)-continuous map if and only if for every intuitionistic fuzzy point $x_{(\alpha,\beta)}$ in X and every fuzzy (r,s)-neighborhood B of $f(x_{(\alpha,\beta)})$, there is a fuzzy (r,s)-neighborhood A of $x_{(\alpha,\beta)}$ such that $f(A) \subseteq \operatorname{int}(\operatorname{cl}(B,r,s),r,s)$.

Proof. Let $x_{(\alpha,\beta)}$ be an intuitionistic fuzzy point in X and B a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. Then there is a fuzzy (r,s)-open set C in Y such that $f(x_{(\alpha,\beta)}) \in C \subseteq B$. So $x_{(\alpha,\beta)} \in f^{-1}(C) \subseteq f^{-1}(B)$. Since f is a fuzzy almost (r,s)-continuous map, by Theorem 2.14,

$$f^{-1}(C) \subseteq \inf(f^{-1}(\operatorname{int}(\operatorname{cl}(C,r,s),r,s)),r,s)$$
$$\subset \inf(f^{-1}(\operatorname{int}(\operatorname{cl}(B,r,s),r,s)),r,s).$$

Put $A=f^{-1}(\operatorname{int}(\operatorname{cl}(B,r,s),r,s))$. Then $x_{(\alpha,\beta)}\in f^{-1}(C)\subseteq\operatorname{int}(A,r,s)\subseteq A$. By Theorem 2.12 (2), $\operatorname{int}(\operatorname{cl}(B,r,s),r,s)$ is fuzzy (r,s)-regular open. Since f is fuzzy almost (r,s)-continuous, $A=f^{-1}(\operatorname{int}(\operatorname{cl}(B,r,s),r,s))$ is a fuzzy (r,s)-open set. Thus A is a fuzzy (r,s)-neighborhood of $x_{(\alpha,\beta)}$ and

$$\begin{array}{lcl} f(A) & = & f(f^{-1}(\operatorname{int}(\operatorname{cl}(B,r,s),r,s))) \\ & \subseteq & \operatorname{int}(\operatorname{cl}(B,r,s),r,s). \end{array}$$

Conversely, let B be a fuzzy (r,s)-regular open set in Y and $x_{(\alpha,\beta)} \in f^{-1}(B)$. Then B is fuzzy (r,s)-open and a fuzzy (r,s)-neighborhood of $f(x_{(\alpha,\beta)})$. By hypothesis, there is a fuzzy (r,s)-neighborhood of $A_{x_{(\alpha,\beta)}}$ of $x_{(\alpha,\beta)}$ such that $f(A_{x_{(\alpha,\beta)}}) \subseteq \operatorname{int}(\operatorname{cl}(B,r,s),r,s) = B$. Since $A_{x_{(\alpha,\beta)}}$ is a fuzzy (r,s)-neighborhood of $x_{(\alpha,\beta)}$, there is a fuzzy (r,s)-open set $C_{x_{(\alpha,\beta)}}$ in X such that

$$x_{(\alpha,\beta)} \in C_{x_{(\alpha,\beta)}} \subseteq A_{x_{(\alpha,\beta)}} \subseteq f^{-1}(f(A_{x_{(\alpha,\beta)}}))$$

 $\subseteq f^{-1}(B).$

So we have

$$f^{-1}(B) = \bigcup \{x_{(\alpha,\beta)} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$$

$$\subseteq \bigcup \{C_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$$

$$\subseteq f^{-1}(B).$$

Thus $f^{-1}(B) = \bigcup \{C_{x_{(\alpha,\beta)}} \mid x_{(\alpha,\beta)} \in f^{-1}(B)\}$ and so $f^{-1}(B)$ is a fuzzy (r,s)-open set in X. Hence f is a fuzzy almost (r,s)-continuous map.

Theorem 3.8 Let (X, \mathcal{T}) and (Y, \mathcal{U}) be SoIFTSs and $(r,s) \in I \otimes I$. If $f: (X, \mathcal{T}) \to (Y, \mathcal{U})$ is a fuzzy (r,s)-irresolute map, then f is a fuzzy (r,s)-semicontinuous map.

Proof. Let B be a fuzzy (r,s)-open set in Y. Then B is a fuzzy (r,s)-semiopen set in Y. Since f is a fuzzy (r,s)-irresolute map, $f^{-1}(B)$ is a fuzzy (r,s)-semiopen set in X. Hence f is a fuzzy (r,s)-semicontinuous map.

The following example shows that the converse of Theorem 3.8 need not be true.

Example 3.9 Let $X = \{x, y, z\}$ and let A_1, A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x)=(0,0.9),\ A_1(y)=(0.3,0.6),\ A_1(z)=(0.3,0.6);$$

$$A_2(x)=(0.9,0),\ A_2(y)=(0.3,0.6),\ A_2(z)=(0.3,0.6);$$
 and

$$B(x) = (0.9, 0), \ B(y) = (0.7, 0.3), \ B(z) = (0.7, 0.3).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal T$ and $\mathcal U$ are SoIFTs on X. Consider a map $f:(X,\mathcal T)\to (X,\mathcal U)$ defined by $f(x)=x,\,f(y)=y$ and f(z)=z. It is easy to see that f is a fuzzy $(\frac12,\frac13)$ -semicontinuous map and B is a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal U)$. But $f^{-1}(B)=B$ is not a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal T)$. Hence f is not a fuzzy $(\frac12,\frac13)$ -irresolute map.

Theorem 3.10 Let $f:(X,\mathcal{T}) \to (Y,\mathcal{U})$ be a map from a SoIFTS X to a SoIFTS Y and $(r,s) \in I \otimes I$. If f is fuzzy (r,s)-semicontinuous and fuzzy almost (r,s)-open, then f is a fuzzy (r,s)-irresolute map.

Proof. Let B be a fuzzy (r,s)-semiclosed set in Y. Then $\operatorname{int}(\operatorname{cl}(B,r,s),r,s)\subseteq B$. Since f is fuzzy (r,s)-semicontinuous, by Theorem 2.15,

$$int(cl(f^{-1}(B), r, s), r, s) \subseteq f^{-1}(cl(B, r, s)).$$

Thus we have

$$\begin{split} & \operatorname{int}(\operatorname{cl}(f^{-1}(B),r,s),r,s) \\ & = & \operatorname{int}(\operatorname{int}(\operatorname{cl}(f^{-1}(B),r,s),r,s),r,s) \\ & \subseteq & \operatorname{int}(f^{-1}(\operatorname{cl}(B,r,s)),r,s). \end{split}$$

Since f is fuzzy (r,s)-semicontinuous and $\operatorname{cl}(B,r,s)$ is fuzzy (r,s)-closed, $f^{-1}(\operatorname{cl}(B,r,s))$ is fuzzy (r,s)-semiclosed in X. Since f is a fuzzy almost (r,s)-open map,

$$\begin{split} f(\operatorname{int}(f^{-1}(\operatorname{cl}(B,r,s)),r,s)) \\ &\subseteq & \operatorname{int}(f(f^{-1}(\operatorname{cl}(B,r,s))),r,s) \\ &\subseteq & \operatorname{int}(\operatorname{cl}(B,r,s),r,s) \subseteq B. \end{split}$$

Hence we have

$$\begin{split} & \operatorname{int}(\operatorname{cl}(f^{-1}(B),r,s),r,s) \\ & \subseteq \quad f^{-1}(f(\operatorname{int}(\operatorname{cl}(f^{-1}(B),r,s),r,s))) \\ & \subseteq \quad f^{-1}(f(\operatorname{int}(f^{-1}(\operatorname{cl}(B,r,s)),r,s))) \\ & \subset \quad f^{-1}(B). \end{split}$$

Thus $f^{-1}(B)$ is a fuzzy (r, s)-semiclosed set in X. Therefore f is a fuzzy (r, s)-irresolute map.

Remark 3.11 Clearly a fuzzy (r,s)-continuous map is a fuzzy almost (r,s)-continuous map for each $(r,s) \in I \otimes I$. That the converse need not be true is shown by the following example. Also, the example shows that a fuzzy almost (r,s)-continuous map need not be a fuzzy (r,s)-irresolute map for each $(r,s) \in I \otimes I$.

Example 3.12 Let $X = \{x, y, z\}$ and let A and B be intuitionistic fuzzy sets in X defined as

$$A(x) = (0,0.5), \ A(y) = (0.3,0.5), \ A(z) = (0.3,0.5);$$

and

$$B(x) = (0,0.7), B(y) = (0.2,0.7), B(z) = (0.2,0.7).$$

Define $T: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$\mathcal{T}(C) = (\mathcal{T}_1(C), \mathcal{T}_2(C)) = \begin{cases} (1,0) & \text{if } C = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } C = A, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(C) = (\mathcal{U}_1(C), \mathcal{U}_2(C)) = \begin{cases} (1,0) & \text{if } C = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } C = A, B, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal T$ and $\mathcal U$ are SoIFTs on X. Consider a map $f:(X,\mathcal T)\to (X,\mathcal U)$ defined by $f(x)=x,\ f(y)=y$ and f(z)=z. Note that $\operatorname{int}(\operatorname{cl}(A,\frac12,\frac13),\frac12,\frac13)=\operatorname{int}(A^c,\frac12,\frac13)=A$ and $\operatorname{int}(\operatorname{cl}(B,\frac12,\frac13),\frac12,\frac13)=\operatorname{int}(A^c,\frac12,\frac13)=A\neq B$ in $(X,\mathcal U).$ So A is a fuzzy $(\frac12,\frac13)$ -regular open set but B is not a fuzzy $(\frac12,\frac13)$ -regular open set in $(X,\mathcal U).$ Since $f^{-1}(A)=A$ is a fuzzy $(\frac12,\frac13)$ -open set in $(X,\mathcal U).$ Since $f^{-1}(A)=A$ is a fuzzy $(\frac12,\frac13)$ -open set in $(X,\mathcal T),\ f$ is a fuzzy almost $(\frac12,\frac13)$ -continuous map. But since $f^{-1}(B)=B$ is not a fuzzy $(\frac12,\frac13)$ -continuous map. Since $f^{-1}(B)=B$ is not fuzzy $(\frac12,\frac13)$ -semiopen in $(X,\mathcal T),\ f$ is not a fuzzy $(\frac12,\frac13)$ -irresolute map.

The following example shows that a fuzzy (r,s)-continuous map need not be a fuzzy (r,s)-irresolute map for each $(r,s) \in I \otimes I$.

Example 3.13 Let $X = \{x, y, z\}$ and let A_1 , A_2 and B be intuitionistic fuzzy sets in X defined as

$$A_1(x)=(0,0.7),\ A_1(y)=(0.3,0.5),\ A_1(z)=(0.3,0.5);$$

$$A_2(x)=(0,0.7),\ A_2(y)=(0.3,0.5),\ A_2(z)=(0.8,0.2);$$
 and

$$B(x) = (0.1, 0.7), B(y) = (0.8, 0.1), B(z) = (0.8, 0.1).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$T(A) = (T_1(A), T_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal T$ and $\mathcal U$ are SoIFTs on X. Consider a map $f:(X,\mathcal T)\to (X,\mathcal U)$ defined by f(x)=x and f(y)=f(z)=y. Then it is easy to see that f is a fuzzy $(\frac12,\frac13)$ -continuous map and B is a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal U)$. But since $f^{-1}(B)=B$ is not a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal T)$, f is not a fuzzy $(\frac12,\frac13)$ -irresolute map.

Remark 3.14 Clearly a fuzzy (r,s)-continuous map is a fuzzy weakly (r,s)-continuous map for each $(r,s) \in I \otimes I$. That the converse need not be true is shown by the following example. Also, the following example shows that a fuzzy weakly (r,s)-continuous map is neither a fuzzy

(r,s)-irresolute map nor a fuzzy almost (r,s)-continuous map for each $(r,s) \in I \otimes I$.

Example 3.15 Let $X = \{x, y, z\}$ and let A_1, A_2 and Bbe intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0.4, 0.3), \ A_1(y) = (0.4, 0.4), \ A_1(z) = (0.1, 0.5); \\ A_2(x) = (0, 1), \ A_2(y) = (0.3, 0.7), \ A_2(z) = (0.1, 0.7).$$

$$A_2(x) = (0,0.5), \ \ A_2(y) = (0.3,0.5), \ \ A_2(z) = (0.1,0.6); \ \ \ \text{Define} \ \mathcal{T}: I(X) \rightarrow I \otimes I \ \text{and} \ \mathcal{U}: I(X) \rightarrow I \otimes I \ \text{by}$$

and

$$B(x) = (0.3, 0), \ B(y) = (0.4, 0.3), \ B(z) = (0.5, 0.2).$$

Define $\mathcal{T}: I(X) \to I \otimes I$ and $\mathcal{U}: I(X) \to I \otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} and \mathcal{U} are SoIFTs on X. Consider a map $f:(X,\mathcal{T})\to (X,\mathcal{U})$ defined by f(x)=x, f(y)=y and f(z) = z. Note that

$$f^{-1}(\underline{0}) = \underline{0} \subseteq \operatorname{int}(f^{-1}(\operatorname{cl}(\underline{0},\frac{1}{2},\frac{1}{3})),\frac{1}{2},\frac{1}{3}) = \underline{0},$$

$$f^{-1}(\underline{1}) = \underline{1} \subseteq \operatorname{int}(f^{-1}(\operatorname{cl}(\underline{1}, \frac{1}{2}, \frac{1}{3})), \frac{1}{2}, \frac{1}{3}) = \underline{1},$$

$$f^{-1}(A_2) = A_2 \subseteq \operatorname{int}(f^{-1}(\operatorname{cl}(A_2, \frac{1}{2}, \frac{1}{3})), \frac{1}{2}, \frac{1}{3}) = A_1.$$

Hence f is a fuzzy weakly $(\frac{1}{2}, \frac{1}{3})$ -continuous map. On the other hand, since $f^{-1}(A_2) = A_2$ is not fuzzy $(\frac{1}{2}, \frac{1}{3})$ open in (X, \mathcal{T}) , f is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -continuous map. It is easy to see that B is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -semiopen set in (X,\mathcal{U}) . But since $f^{-1}(B) = B$ is not a fuzzy $(\frac{1}{2},\frac{1}{3})$ semiopen set in (X,T), f is not fuzzy $(\frac{1}{2},\frac{1}{3})$ -irresolute. Since $\operatorname{int}(\operatorname{cl}(A_2,\frac{1}{2},\frac{1}{3}),\frac{1}{2},\frac{1}{3})=A_2$, A_2 is a fuzzy $(\frac{1}{2},\frac{1}{3})$ -regular open set in (X,\mathcal{U}) . But since $f^{-1}(A_2)=A_2$ is not fuzzy $(\frac{1}{2}, \frac{1}{3})$ -open in (X, \mathcal{T}) , f is not a fuzzy almost $(\frac{1}{2},\frac{1}{3})$ -continuous map.

The following example shows that a fuzzy (r, s)irresolute map is neither a fuzzy (r, s)-continuous map nor a fuzzy weakly (r,s)-continuous map for each $(r,s) \in$ $I \otimes I$. Also, the example shows that a fuzzy (r, s)-irresolute map need not be a fuzzy almost (r, s)-continuous map for each $(r,s) \in I \otimes I$.

Example 3.16 Let $X = \{x, y, z\}$ and let A_1 and A_2 be intuitionistic fuzzy sets in X defined as

$$A_1(x) = (0,1), \ A_1(y) = (0.2, 0.7), \ A_1(z) = (0.1, 0.7);$$

$$A_2(x) = (0,1), \ A_2(y) = (0.3,0.7), \ A_2(z) = (0.1,0.7).$$

Define
$$\mathcal{T}:I(X)
ightarrow I\otimes I$$
 and $\mathcal{U}:I(X)
ightarrow I\otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly \mathcal{T} and \mathcal{U} are SoIFTs on X. Consider a map $f:(X,T)\to (X,\mathcal{U})$ defined by f(x)=x, f(y)=y and f(z) = z. Then it is easy to see that f is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ irresolute map. Since $f^{-1}(A_2) = A_2$ is not fuzzy $(\frac{1}{2}, \frac{3}{3})$ open in (X, T), f is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -continuous map.
Since $f^{-1}(A_2) = A_2 \nsubseteq \operatorname{int}(f^{-1}(\operatorname{cl}(A_2, \frac{1}{2}, \frac{1}{3})), \frac{1}{2}, \frac{1}{3}) =$ A_1 , f is not a fuzzy weakly $(\frac{1}{2}, \frac{1}{3})$ -continuous map. Since $\operatorname{int}(\operatorname{cl}(A_2, \frac{1}{2}, \frac{1}{3}), \frac{1}{2}, \frac{1}{3}) = A_2$, A_2 is a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -regular open set in (X, \mathcal{U}) . But $f^{-1}(A_2) = A_2$ is not a fuzzy $(\frac{1}{2}, \frac{1}{3})$ -open set in (X, \mathcal{U}) . Hence, f is not a fuzzy almost $(\frac{1}{2},\frac{1}{3})$ -open set in (X,\mathcal{T}) . Hence f is not a fuzzy almost $(\frac{1}{2},\frac{1}{3})$ -continuous map.

In view of Example 3.12, Example 3.13, Example 3.15, and Example 3.16, we have the following result.

Theorem 3.17 (1) Fuzzy (r, s)-irresolute maps and fuzzy (r, s)-continuous maps are independent notions.

- (2) Fuzzy (r, s)-irresolute maps and fuzzy almost (r, s)continuous maps are independent notions.
- (3) Fuzzy (r, s)-irresolute maps and fuzzy weakly (r, s)continuous maps are independent notions.

Remark 3.18 It is clear that every fuzzy (r, s)presemiopen map is a fuzzy (r, s)-semiopen map for each $(r,s) \in I \otimes I$. However, the converse may be false as shown by the following example.

Example 3.19 Let $X = \{x, y, z\}$ and let A_1, A_2 and Bbe intuitionistic fuzzy sets in X defined as

$$A_1(x) = (1,0), A_1(y) = (0.3,0.5), A_1(z) = (0.1,0.5);$$

$$A_2(x) = (0,1), \ A_2(y) = (0.3, 0.5), \ A_2(z) = (0.1, 0.5);$$

$$B(x) = (1,0), B(y) = (0.4,0.2), B(z) = (0.1,0.1).$$

Define $\mathcal{T}:I(X)\to I\otimes I$ and $\mathcal{U}:I(X)\to I\otimes I$ by

$$\mathcal{T}(A) = (\mathcal{T}_1(A), \mathcal{T}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_1, \\ (0,1) & \text{otherwise;} \end{cases}$$

and

$$\mathcal{U}(A) = (\mathcal{U}_1(A), \mathcal{U}_2(A)) = \begin{cases} (1,0) & \text{if } A = \underline{0}, \underline{1}, \\ (\frac{1}{2}, \frac{1}{3}) & \text{if } A = A_2, \\ (0,1) & \text{otherwise.} \end{cases}$$

Then clearly $\mathcal T$ and $\mathcal U$ are SoIFTs on X. Consider a map $f:(X,\mathcal T)\to (X,\mathcal U)$ defined by $f(x)=x,\,f(y)=y$ and f(z)=z. Then it is easy to see that f is a fuzzy $(\frac12,\frac13)$ -semiopen map. Obviously, B is a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal T)$. But since f(B)=B is not a fuzzy $(\frac12,\frac13)$ -semiopen set in $(X,\mathcal U),\,f$ is not fuzzy $(\frac12,\frac13)$ -presemiopen map.

References

- [1] K. T. Atanassov, *Intuitionistic fuzzy sets*, Fuzzy Sets and Systems **20** (1986), 87–90.
- [2] C. L. Chang, *Fuzzy topological spaces*, J. Math. Anal. Appl. **24** (1968), 182–190.
- [3] K. C. Chattopadhyay, R. N. Hazra, and S. K. Samanta, *Gradation of openness: Fuzzy topology*, Fuzzy Sets and Systems **49** (1992), 237–242.
- [4] D. Coker, An introduction to intuitionistic fuzzy topological spaces, Fuzzy Sets and Systems 88 (1997), 81–89.
- [5] D. Coker and M. Demirci, An introduction to intuitionistic fuzzy topological spaces in Sostak's sense, BUSEFAL 67 (1996), 67–76.
- [6] H. Gurcay, D. Coker and A. Haydar. Es, *On fuzzy continuity in intuitionistic fuzzy topological spaces*, J. Fuzzy Math. **5** (1997), 365–378.

- [7] Y. B. Jun, J. O. Kang and S. Z. Song, *Intuitionistic fuzzy irresolute and continuous maps*, Far East J. Math. Sci. **17**(2) (2005), 201–216.
- [8] E. P. Lee, Semiopen sets on intuitionistic fuzzy topological spaces in Sostak's sense, J. of Fuzzy Logic and Intelligent Systems 14 (2004), 234–238.
- [9] S. J. Lee and E. P. Lee, Fuzzy (r, s)-semicontinuous mappings on intuitionistic fuzzy topological spaces in Sostak's sense, J. of Fuzzy Logic and Intelligent Systems **16** (2006), 108–112.
- [10] M. N. Mukherjee and S. P. Sinha, *Irresolute and almost open functions between fuzzy topological spaces*, Fuzzy Sets and Systems **29** (1989), 381–388.
- [11] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992), 371–375.
- [12] A. A. Ramadan, S. E. Abbas, and A. A. Abd ellatif, *Compactness in intuitionistic fuzzy topological spaces*, International Journal of Mathematics and Mathematical Sciences 2005:1 (2005), 19–32.
- [13] A. Sostak, On a fuzzy topological structure, Supp. Rend. Circ. Mat. Palermo. (Ser. II) 11 (1985), 89–103.
- [14] L. A. Zadeh, *Fuzzy sets*, Inform. and Control **8** (1965), 338–353.

Seok Jong Lee

Professor of Chungbuk National University Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: sjl@chungbuk.ac.kr

Jin Tae Kim

Research Area: Fuzzy mathematics, Fuzzy topology, General topology

E-mail: kjtmath@hanmail.net