퍼지 일반화된 위상 공간에서 FUZZY r-GENERALIZED ALMOST CONTINUITY에 관한 연구

Fuzzy r-Generalized Almost Continuity on Fuzzy Generalized Topological Spaces

민원근

Won Keun Min

강원대학교 수학과

요 약

본 논문에서는 fuzzy r-generalized almost continuity의 개념과 특성을 연구한다. 특히 fuzzy r-generalized regular open sets를 이용하여 fuzzy r-generalized almost continuity의 특성을 밝힌다.

Abstract

In this paper, we introduce the concept of fuzzy r-generalized almost continuous mapping and obtain some characterizations of such a mapping. In particular, we investigate characterizations for the fuzzy r-generalized almost continuity by using the concept of fuzzy r-generalized regular open sets.

Key Words: fuzzy generalized topological space, fuzzy r-generalized open set, fuzzy r-generalized continuous, fuzzy r-generalized regular open set.

1. Introduction

Let *I* be the unit interval [0,1] of the real line. A member *A* of I^X is called a *fuzzy set* [6] *X*. By $\tilde{0}$ and $\tilde{1}$, we denote constant maps on X with value 0 and 1, respectively. For any $A \in I^X$, A^c denotes the complement $\tilde{1}-A$. All other notations are standard notations of fuzzy set theory.

A fuzzy point x_{α} in X is a fuzzy set x_{α} is defined as follows

$$x_{\alpha}(y) = \begin{cases} \alpha, & \text{if } y = x, \\ 0, & \text{if } y \neq x. \end{cases}$$

A fuzzy point x_{α} is said to belong to a fuzzy set A in X, denoted by $x_{\alpha} \in A$, if $\alpha \leq A(x)$ for $x \in X$.

A fuzzy set A in X is the union of all fuzzy points which belong to A.

Let $f: X \to Y$ be a mapping and $A \in I^X$ and $B \in I^Y$. Then f(A) is a fuzzy set in Y, defined by

$$f(A)(y) = \begin{cases} \sup A(z)_{z \in f^{-1}(y)}, & \text{if } f^{-1}(y) \neq 0, \ y \in Y \\ \\ 0, & \text{otherwise}, \end{cases}$$

접수일자 : 2009년 12월 26일

완료일자 : 2010년 3월 26일

and $f^{-1}(B)$ is a fuzzy set in X, defined by $f^{-1}(B)(x) = B(f(x)), x \in X.$

A Chang's fuzzy topological space [1] is an ordered pair (X, T) is a non-empty set X and $T \subseteq I^X$ satisfying the following conditions:

- $(01) \ 0_X, 1_X \in T.$
- (02) If $A, B \in T$, then $A \cap B \in T$.
- (03) If $A_i \in \tau$, for all $i \in J$, then $\bigcup A_i \in \tau$.

A smooth topological space [5] is an ordered pair (X, T), where X is a non-empty set and $T: I^X \to I$ is a mapping satisfying the following conditions: (01) $T(0_X) = T(1_X) = 1$.

- (02) $T(A_1 \cap A_2) \ge T(A_1) \wedge T(A_2)$ for $A_1, A_2 \in I^X$.
- (03) $T(\cup A_i) \ge \wedge T(A_i)$ for all $i \in J, A_i \in I^X$.

Then $T: I^X \to I$ is called a *smooth topology* on *X*. The number T(A) is called the *degree of openness* of *A*.

A mapping $T^*: I^X \to I$ is called a *smooth cotopology* [2] iff the following three conditions are satisfied:

(C1) $T^*(0_X) = T^*(1_X) = 1.$ (C2) $T^*(A_1 \cup A_2) \ge T^*(A_1) \land T^*(A_2), \quad A_1, A_2 \in I^X.$ (C3) $T^*(\cap A_i) \ge \land T^*(A_i)$ for all $i \in I A_i \in I^X.$ A fuzzy generalized topological space (simply, FGTS) [3] is an ordered pair (X, T), where X is a non-empty set and $T: I^X \to I$ is a mapping satisfying the following conditions:

(GO1) $T(0_X)=1$.

(GO2) $T(\lor A_i) \ge \land T(A_i)$ for all $i \in J, A_i \in I^X$.

Then the mapping $T: I^X \to I$ is called a *fuzzy generalized topology* [3] on X. The number T(A) is called the *degree of generalized openness* of A.

A mapping $T^*: I^X \to I$ is called a *fuzzy generalized* cotopology if the following three conditions are satisfied:

(GO1) $T^*(1_X)=1.$

(GO2) $T^*(\wedge A_i) \ge \wedge T^*(A_i)$ for all $i \in J$, $A_i \in I^X$. Then $T^*(A)$ is called the *degree of generalized* closedness of A.

Theorem 1.1 ([3]). (1) If T is a fuzzy generalized topology on X, then the mapping $T^*: I^X \to I$ defined by $T^*(A) = T(A^c)$, is a fuzzy generalized cotopology on X.

(2) If T^* is a fuzzy generalized cotopology on a nonempty set X, then the mapping $T: I^X \to I$ defined by T $(A)=T^*(A^c)$, is a fuzzy generalized topology on X.

Let (X, T) be a FGTS and $A \in I^X$. Then

(1) The *r*-closure of A [4], denoted by $gCl_r(A)$, is defined by

$$gCl_r(A) = \cap \{K \in I^X : T^*(K) \ge r, A \subseteq K\},$$

where $T^*(K)=T(K^c)$.

(2) The *r*-interior of A [4], denoted by $gInt_r(A)$, is defined by

 $gInt_r(A) = \bigcup \{ K \in I^X : T(K) \ge r, K \subseteq A \}.$

We will call A a fuzzy r-generalized open set [4] if $T(A) \ge r$, A a fuzzy r-generalized closed set if $T^*(A) \ge r$.

Theorem 1.2 ([4]). Let (X,T) be a FGTS and $A, B \in I^X$. Then

- (1) $gInt_r(0_X)=0_X$ and $gCl_r(1_X)=1_X$.
- (2) $gInt_r(A) \subseteq A \subseteq gCl_r(A)$.
- (3) $gInt_r(gInt_r(A))=gInt_r(A)$ and $gCl_r(gCl_r(A))=gCl_r(A)$ (A)
- $(4)A \subseteq B \implies gI\!\!nt_r(A) \subseteq gI\!\!nt_r(B), \ gC\!l_r(A) \subseteq gC\!l_r(B).$
- (5) $(gCl_r(A))^c = gInt_r(A^c)$ and $(gInt_r(A))^c = gCl_r(A^c)$.
- (6) A is fuzzy r-generalized open iff $A=gInt_r(A)$.
- (7) A is fuzzy r-generalized closed iff $A=gCl_r(A)$.

2. Main Results

Definition 2.1([4]). Let $f:(X, T_1) \rightarrow (Y, T_2)$ be a mapping on FGTS's. Then f is said to be *fuzzy* r *-generalized continuous* if for every $A \in I^Y$, we have

$$T_2(A) \ge r \implies T_1(f^{-1}(A)) \ge r.$$

Theorem 2.2([4]). Let $f: X \to Y$ be a mapping between FGTS's (X, T_1) and (Y, T_2) . Then the following are equivalent:

- (1) f is fuzzy r-generalized continuous.
- (2) For every fuzzy r-generalized open set A in Y, f⁻¹(A) is fuzzy r-generalized open in X.
- (3) $T_2^*(B) \ge r \implies T_1^*(f^{-1}(B)) \ge r$ for $B \in I^Y$.
- (4) For every fuzzy r-generalized closed set A in Y, f⁻¹(A) is fuzzy r-generalized closed in X.
- (5) $f(gCl_r(A)) \subseteq gCl_r(f(A) \text{ for } A \in I^X.$
- (6) $gCl_r(f^{-1}(B)) \subseteq f^{-1}(gCl_r(B))$ for $B \in I^Y$.
- (7) $f^{-1}(gInt_r(B)) \subseteq gInt_r(f^{-1}(B))$ for $B \in I^Y$.

Theorem 2.3. Let $f: X \to Y$ be a mapping between FGTS's (X, T_1) and (Y, T_2) . Then f is fuzzy r-generalized continuous if and only if for fuzzy point x_{α} in X and each fuzzy r-generalized open set V containing $f(x_{\alpha})$, there is a fuzzy r-generalized open set U containing x_{α} such that $f(U) \subseteq V$.

Proof. Suppose f is fuzzy r-generalized continuous. For each fuzzy point x_{α} in X and each fuzzy r-generalized open set V containing $f(x_{\alpha})$, since f is fuzzy r-generalized continuous, from Theorem 2.2 (2), $f^{-1}(V)$ is a fuzzy r-generalized open set containing x_{α} . Set $U = f^{-1}(V)$. Then the fuzzy r-generalized open set U satisfies $f(U) \subseteq V$.

For the converse, let V be any fuzzy r-generalized open set in Y. For each fuzzy point $x_{\alpha} \in f^{-1}(V)$, by hypothesis, there exists a fuzzy r-generalized open set U containing x_{α} such that $f(U) \subseteq V$. So $x_{\alpha} \in U \subseteq f^{-1}$ (V) and $x_{\alpha} \in gInt_r(f^{-1}(V))$. This implies $f^{-1}(V) \subseteq gInt_r$ $(f^{-1}(V))$ and from Theorem 1.2 (6), $f^{-1}(V)$ is fuzzy r -generalized open. Hence from Theorem 2.2(2), f is fuzzy r-generalized continuous.

Definition 2.4. Let $f: X \to Y$ be a mapping between FGTS's (X, T_1) and (Y, T_2) . Then f is said to be *fuzzy* r-generalized almost continuous if for fuzzy

point x_{α} in X and each fuzzy r-generalized open set V containing $f(x_{\alpha})$, there is a fuzzy r-generalized open set U containing x_{α} such that

$$f(U) \subseteq gInt_r(gCl_r(V)).$$

Every fuzzy r-generalized continuous mapping f is clearly fuzzy r-generalized almost continuous but the converse is not always true.

Example 2.5. Let X = I, let A, B and C be fuzzy sets defined as follows

$$A(x) = \frac{1}{2}(x+1), x \in I;$$

$$B(x) = -\frac{1}{2}(x-2), x \in I;$$

and

$$C(x) = \begin{cases} -\frac{1}{2}(x-2), & \text{if } 0 \le x \le \frac{1}{2}, \\ \frac{1}{2}(x+1), & \text{if } \frac{1}{2} \le x \le 1. \end{cases}$$

Consider two fuzzy families T_1 and T_2 defined as the following:

$$T_1(\mu) {=} \begin{cases} \displaystyle \frac{2}{3}, & \text{ if } \mu = \tilde{0}, \\ \displaystyle \frac{1}{2}, & \text{ if } \mu = C, \\ \displaystyle 0, & otherwise\,; \end{cases}$$

and

$$T_2(\mu) = \begin{cases} \frac{1}{2}, & \text{ if } \mu = \tilde{0}, \\ \frac{2}{3}, & \text{ if } \mu = A, B, A \cup B, C, \\ 0, & otherwise. \end{cases}$$

Note $gInt_r(gCl_r(\tilde{0}))=\tilde{0}$ and $gInt_r(gCl_r(A))=gInt_r(gCl_r(B))=gInt_r(gCl_r(C))=C$. Obviously the identity mapping $f:(X,T_1)\to(X,T_2)$ is fuzzy $\frac{1}{3}$ -generalized almost continuous but not fuzzy $\frac{1}{3}$ -generalized continuous.

Theorem 2.6. Let $f: X \rightarrow Y$ be a mapping between FGTS's (X, T_1) and (Y, T_2) . Then the following statements are equivalent:

- (1) f is fuzzy r-generalized almost continuous.
- (2) $f^{-1}(B) \subseteq gInt_r(f^{-1}(gInt_r(gCl_r(B))))$ for each fuzzy *r*-generalized open set *B* in *Y*.
- (3) $gCl_r(f^{-1}(gCl_r(gInt_r(F)))) \subseteq f^{-1}(F)$ for each fuzzy *r*-generalized closed set *F* in *Y*.
- (4) $gCl_r(f^{-1}(gCl_r(gInt_r(gCl_r(B))))) \subseteq f^{-1}(gCl_r(B))$ for each $B \in I^Y$.
- (5) $f^{-1}(gInt_r(B)) \subseteq gInt_r(f^{-1}(gInt_r(gCl_r(gInt_r(B)))))$ for each $B \in I^{Y}$.

Proof. (1) \Rightarrow (2) Let *B* be a fuzzy *r*-generalized open set in *Y*. From the definition of fuzzy *r* -generalized almost continuity, there exists a fuzzy *r* -generalized open set *U* of x_{α} such that $f(U) \subseteq gInt_r$ $(gCl_r(B))$ for each $x_{\alpha} \in f^{-1}(B)$. It implies $x_{\alpha} \in gInt_r$ $(f^{-1}(gInt_r(gCl_r(B))))$. Hence we have $f^{-1}(B) \subseteq gInt_r$ $(f^{-1}(gInt_r(gCl_r(B))))$.

 $\begin{array}{ll} (2) \Rightarrow (1) \mbox{ Let } x_{\alpha} \mbox{ be any fuzzy point in } X \mbox{ and } V \mbox{ a fuzzy } r\mbox{-generalized open set containing } f(x_{\alpha}). \mbox{ Then since } x_{\alpha} \! \in \! f^{-1}(V) \! \subseteq g Int_r(f^{-1}(g Int_r(g Cl_r(V)))), \mbox{ there exists a fuzzy } r\mbox{-generalized open set } U \mbox{ containing } x_{\alpha} \mbox{ such that } x_{\alpha} \! \in U \! \subseteq \! f^{-1}(g Int_r(g Cl_r(V))). \mbox{ This implies } f \mbox{ } (x_{\alpha}) \! \in \! f(U) \! \subseteq \! f(f^{-1}(g Int_r(g Cl_r(V)))) \! \subseteq \! g Int_r(g Cl_r(V)). \mbox{ Hence } f \mbox{ is fuzzy } r\mbox{-generalized almost continuous.} \end{array}$

(2) \Rightarrow (3) Let F be any fuzzy r-generalized closed set of Y. Then it follows

$$\begin{split} f^{-1}(\tilde{1}-F) &\subseteq gInt_r(f^{-1}(gInt_r(gCl_r(\tilde{1}-F)))) \\ &= gInt_r(f^{-1}(\tilde{1}-gCl_r(gInt_r(F)))) \\ &= gInt_r(\tilde{1}-f^{-1}(gCl_r(gInt_r(F)))) \\ &= \tilde{1}-gCl_r(f^{-1}(gCl_r(gInt_r(F)))). \end{split}$$
 Hence we have $gCl_r(f^{-1}(gCl_r(gInt_r(F)))) \subseteq f^{-1}(F).$

(3) \Rightarrow (4) It is obvious.

$$\begin{array}{l} (4) \Rightarrow (5) \mbox{ For } B \in I^Y \mbox{, from hypothesis, it follows} \\ f^{-1}(gInt_r(B)) = \tilde{1} - (f^{-1}(gCl_r(\tilde{1} - B))) \\ & \subseteq \tilde{1} - gCl_r(f^{-1}(gCl_r(gInt_r(gCl_r(\tilde{1} - B))))) \\ & = gInt_r(f^{-1}(gInt_r(gCl_r(gInt_r(B))))). \end{array}$$

Hence

$$f^{-1}(gInt_r(B)) \subseteq gInt_r(f^{-1}(gInt_r(gCl_r(gInt_r(B))))).$$

 $(5) \Rightarrow (1)$ For each fuzzy point x_{α} in X and each fuzzy r-generalized open set V containing $f(x_{\alpha})$, by (5), we have $x_{\alpha} \in f^{-1}(V) = f^{-1}(gInt_r(V)) \subseteq gInt_r(f^{-1}(gInt_r(gCl_r(V)))))$. So there is a fuzzy r-generalized open set U of x_{α} such that $x_{\alpha} \in U \subseteq f^{-1}(gInt_r(gCl_r(V)))$. This implies $f(U) \subseteq gInt_r(gCl_r(V))$. Thus f is fuzzy r-generalized almost continuous.

Definition 2.7. Let (X,T) be a FGTS and $A \in I^X$. Then A is called a *fuzzy* r-generalized regular open set if $A=gInt_r(gCl_r(A))$.

Theorem 2.8. Let (X,T) be a FGTS and $A,B \in I^X$. Then

- (1) Every fuzzy *r*-generalized regular open set is fuzzy *r*-generalized open.
- (2) If A and B are fuzzy r-generalized regular open set, so also is A ∩ B.

Proof. (1) Let A be fuzzy r-generalized regular open. Then

 $gI\!\!nt_r(A) = gI\!\!nt_r(gI\!\!nt_r(gC\!l_r(A))) = gI\!\!nt_r(gC\!l_r(A)) = A.$

From Theorem 1.2, A is fuzzy r-generalized open.

(2) Obvious.

In general, every fuzzy r-generalized open set is not fuzzy r-generalized regular open and the union of two fuzzy r-generalized regular open sets is not fuzzy r-generalized regular open as shown in the next example.

Example 2.9. Let X = I, let A, B, C and D be fuzzy sets defined as follows

$$A(x) = \frac{1}{2}(x+1), \ x \in I;$$

$$B(x) = -\frac{1}{2}(x-2), \ x \in I;$$

$$C(x) = \begin{cases} 0, & \text{if } 0 \le x \le \frac{1}{4}, \\ \frac{2}{3}(x-\frac{1}{4}), & \text{if } \frac{1}{4} \le x \le 1; \end{cases}$$

and

$$D(x) = \begin{cases} -\frac{2}{3}(x - \frac{3}{4}), & \text{if } 0 \le x \le \frac{3}{4} \\ 0, & \text{if } \frac{3}{4} \le x \le 1. \end{cases}$$

Consider a fuzzy family T defined as the following:

$$T(\mu) = \begin{cases} \frac{2}{3}, & \text{if } \mu = \tilde{0}, \\ \frac{1}{2}, & \text{if } \mu = A, B, A \cup B, C, D, C \cup D, (C \cap D)^c, \\ 0, & otherwise. \end{cases}$$

Let $r = \frac{1}{2}$. Then for fuzzy *r*-generalized regular open sets *A*, *B*, we know that

$$gInt_r(gCl_r(A \cup B)) = (C \cap D)^c \neq A \cup B,$$

and so $A \cup B$ is not fuzzy *r*-generalized regular open. On the other hand, since $A \cup B$ is a fuzzy *r*-generalized regular open set, we can say that every fuzzy *r*-generalized open set is not generally fuzzy *r*-generalized regular open.

Theorem 2.10. Let $f: X \to Y$ be a mapping between FGTS's (X, T_1) and (Y, T_2) . Then f is fuzzy r-generalized almost continuous if and only if $gCl_r(f^{-1}(V)) \subseteq f^{-1}(gCl_r(V))$ for a fuzzy r-generalized regular open set V in Y.

Proof. Suppose f is fuzzy r-generalized almost continuous. Let V be any fuzzy r-generalized regular open set of Y. Then since $(\tilde{1}-V)$ is fuzzy r-generalized regular closed, it follows

$$\begin{split} \tilde{1} - f^{-1}(g\mathit{Cl}_r(\mathit{V})) &= f^{-1}(g\mathit{Int}_r(\tilde{1} - \mathit{V})) \\ &\subseteq g\mathit{Int}_r(f^{-1}(g\mathit{Int}_r(g\mathit{Cl}_r(g\mathit{Int}_r(\tilde{1} - \mathit{V}))))) \end{split}$$

$$\begin{split} &= g I h t_r (f^{-1} (g I h t_r (\tilde{1} - V))) \\ &= g I h t_r (\tilde{1} - (f^{-1} (g C l_r (V)))) \\ &= \tilde{1} - g C l_r (f^{-1} (g C l_r (V))) \\ &= \tilde{1} - g C l_r (f^{-1} (Q C l_r (V))) \\ \end{split}$$
 Hence we have $g C l_r (f^{-1} (V)) \subseteq f^{-1} (g C l_r (V)).$

For the converse, let F be any fuzzy *r*-generalized closed set in Y. Since $gInt_r(F)$ is a fuzzy *r*-generalized regular open set, from hypothesis and $gCl_r(gInt_r(F)) \subseteq gInt_r(F) \subseteq F$, it follows

$$\begin{split} gCl_r(f^{-1}(gCl_r(gInt_r(F)))) &\subseteq gCl_r(f^{-1}(gInt_r(F))) \subseteq f^{-1} \\ (gCl_r(gInt_r(F))) &\subseteq f^{-1}(F). \end{split}$$

By Theorem 2.6 (3), f is fuzzy r-generalized almost continuous.

Theorem 2.11. Let $f: X \to Y$ be a mapping between FGTS's (X, T_1) and (Y, T_2) . Then the following statements are equivalent:

- (1) f is fuzzy r-generalized almost continuous.
- (2) f⁻¹(V) is fuzzy r-generalized open for a fuzzy r -generalized regular open set V in Y.
- (3) $f^{-1}(F)$ is fuzzy *r*-generalized closed for a fuzzy *r*-generalized regular closed set *F* in *Y*.

Proof. (1) \Rightarrow (2) Let V be a fuzzy r-generalized regular open set in Y. For each $x_{\alpha} \in f^{-1}(V)$, from the fuzzy r-generalized almost continuity of f, there a fuzzy r-generalized open set U in X such that $f(U) \subseteq$ $gInt_r(gCl_r(V))$. Since V is a fuzzy r-generalized regular open, $x_{\alpha} \in U \subseteq f^{-1}(V)$ and so $f^{-1}(V)$ is fuzzy rgeneralized open set.

(2) \Rightarrow (1) Let V be a fuzzy r-generalized open set containing $f(x_{\alpha})$. Since $gInt_r(gCl_r(V))$ is fuzzy r -generalized regular open, by (2), $f^{-1}(gInt_r(gCl_r(V)))$ is a fuzzy r-generalized open set containing x_{α} . Set U = $f^{-1}(gInt_r(gCl_r(V)))$. Then U is a fuzzy r-generalized open set satisfying $f(U) \subseteq gInt_r(gCl_r(V))$. Thus f is a fuzzy r-generalized almost continuous mapping.

(2) \Leftrightarrow (3) Obvious.

References

- C. L. Chang, "Fuzzy topological spaces", J. Math. Anal. Appl., Vol. 24, pp. 182–190, 1968.
- [2] S. J. Lee and E. P. Lee, "Fuzzy r-continuous and r-semicontinuous maps", *Int. J. Math. Math. Sci.*, vol. 27, no. 1, pp. 53–63, 2001.
- [3] W. K. Min, "Fuzzy generalized topological spaces", J. Fuzzy Logic and Intelligent Systems, vol 19, no. 3, pp. 404–407, 2009.

- [4] -----, "Fuzzy *r*-generalized open sets and fuzzy *r*-generalized continuity", *J. Fuzzy Logic* and Intelligent Systems, vol. 19, no. 5, pp. 695–698.
- [5] A. A. Ramadan, "Smooth topological spaces", *Fuzzy Sets and Systems*, vol. 48, pp. 371–375, 1992.
- [6] L. A. Zadeh, "Fuzzy sets", Inform. and Control, vol. 8, pp. 338–353, 1965.

저 자 소 개

민원근 (Won Keun Min)

1988년 - 현재:강원대학교 수학과 교수

관심분야 : 퍼지 위상, 퍼지 이론, 일반 위상 Phone :033-250-8419 Fax :033-252-7289 E-mail :wkmin@kangwon.ac.kr