• Title/Summary/Keyword: fuzzy PI controller

Search Result 302, Processing Time 0.03 seconds

Gain Tuning of a Fuzzy Logic Controller Superior to PD Controllers in Motor Position Control

  • Kim, Young-Real
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.3
    • /
    • pp.188-199
    • /
    • 2014
  • Although the fuzzy logic controller is superior to the proportional integral derivative (PID) controller in motor control, the gain tuning of the fuzzy logic controller is more complicated than that of the PID controller. Using mathematical analysis of the proportional derivative (PD) and fuzzy logic controller, this study proposed a design method of a fuzzy logic controller that has the same characteristics as the PD controller in the beginning. Then a design method of a fuzzy logic controller was proposed that has superior performance to the PD controller. This fuzzy logic controller was designed by changing the envelope of the input of the of the fuzzy logic controller to nonlinear, because the fuzzy logic controller has more degree of freedom to select the control gain than the PD controller. By designing the fuzzy logic controller using the proposed method, it simplified the design of fuzzy logic controller, and it simplified the comparison of these two controllers.

Current Control of Switched Reluctance Motor Using Self-tuning Fuzzy Controller (자기동조 퍼지 제어기를 이용한 스위치드 릴럭턴스 모터의 전류제어)

  • Lee, Young-Soo;Kim, Jaehyuck;Oh, Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.473-479
    • /
    • 2016
  • This paper describes an accurate and stable current control method of switched reluctance motors(SRMs), which have recently attracted considerable wide attention owing to their favorable features, such as high performance, high durability, structural simplicity, low cost, etc. In most cases, the PI controllers(PICC) have been used mostly for the current control of electric motors because their algorithm and selection of controller gain are relatively simpler compared to other controllers. On the other hand, the PI controller requires an adjustment of the controller gains for each operating point when nonlinear system parameters change rapidly. This paper presents a stable current control method of an SRM using self-tuning fuzzy current controller(STFCC) under nonlinear parameter variation. The performance of the considered method is validated via a dynamic simulation of the current controlled SRM drive using Matlab/Simulink program.

High Performance Control of Induction Motor Drive using Multi Adaptive Fuzzy Controller (다중 적응 퍼지제어기를 이용한 유도전동기 드라이브의 고성능 제어)

  • Ko, Jae-Sub;Choi, Jung-Sik;Chung, Dong-Hwa
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.10
    • /
    • pp.59-68
    • /
    • 2009
  • The field oriented control of induction motors is widely used in high performance applications. However, detuning caused by parameter disturbance still limits the performance of these drives. In order to accomplish variable speed operation, conventional PI-like controllers are commonly used. These controllers provide limited good performance over a wide range of operation, even under ideal field oriented conditions. This paper is proposed high performance control of induction motor drive using multi adaptive fuzzy controller. This controller has been performed for speed control with fuzzy adaptation mechanism (FAM)-PI, current control with model reference adaptive fuzzy control(MFC) and estimation of speed using ANN. The proposed control algorithm is applied to induction motor drive system using FAM-PI, MFC and ANN controller. The performance of proposed controller is evaluated by analysis for various operating conditions using parameters of induction motor drive. Also, this paper is proposed the analysis results to verify the effectiveness of this controller.

Multi-PI Controller for High Performance Control of IPMSM Drive (IPMSM 드라이브의 고성능 제어를 위한 Multi-PI 제어기)

  • Ko, Jae-Sub;Park, Ki-Tae;Choi, Jung-Sik;Park, Byung-Sang;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.91-93
    • /
    • 2007
  • This paper presents multi-PI controller of IPMSM drive using fuzzy and neural-network. In general, PI controller in computer numerically controlled machine process fixed gain. To increase the robustness, fred gain PI controller, Multi-PI controller proposes a new method based fuzzy and neural-network. Multi-PI controller is developed to minimize overshoot and settling time following sudden parameter changes such as speed, load torque, inertia, rotor resistance and self inductance. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF

Fuzzy Modeling and Control of Differential Driving Wheeled Mobile Robot: To Achieve Performance Objective

  • Kang, Jin-Shig
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.3 no.2
    • /
    • pp.166-172
    • /
    • 2003
  • The dynamics of the DDWMR depends on the velocity difference of the two driving wheels. And which is known as a type of non-holonomic equation. By this reason, the treatment of DDWMR had become difficult and conservative. In this paper, the differential-driving wheeled mobile robot is considered. The Takaki-Surgeno fuzzy model and a control method for DDWMR is presented. The suggested controller has three control elements. The first element is fuzzy state feedback designed for eliminating the dependence of time-varying parameter. The second element is weighting controller which is designed for good frequency response. The third controller is PI-controller which is designed for good command following and robustness with un-modeled dynamics. In order for achieving the performance objective, the design of controller is based on the loop-shaping algorithm.

A Study on Speed Control of the Switched Reluctance Motor using Fuzzy PI Controller (퍼지 PI 제어기를 사용한 스위치드 리럭턴스 전동기의 속도제어에 관한 연구)

  • Ryoo, Hong-Je;Kang, Wook;Kim, Hak-Sung;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.165-168
    • /
    • 1994
  • The paper deals with the fuzzy PI control of a switched reluctance motor drive. Fuzzy algorithm based on linguistic rules describing the operator's control strategy is applied to speed control of the SRM. Simulation and experimental results show that performance of the furry PI controller is superior to that of conventional PI controller. In particular the robustness of the system is improved.

  • PDF

Identification and Control of Command Panoramic Sight System (조준경안정화시스템의 인식과 제어)

  • Kim, Dae-Woon;Cheon, Soon-Yong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.14-21
    • /
    • 2007
  • Sight Stabilization system is the control system to preserve Line of Sight for the targets though many nonlinear disturbances and vibrations are generated. In this paper, we identified Stabilization system using RLS algorithm, one of the system identification algorithm and found out the modeling of system. Considering nonlinear operational condition this paper proposes two Knowledge-base controllers - Fuzzy controller, Fuzzy PI Gain Scheduling controller, and simulates the performances of proposed controllers compare with Lead PI controller being used in Sight system of NFIV.

Design of Nonlinear Fuzzy PI+D Controller Using Simplified Indirect Inference Method (간편 간접추론방법을 이용한 비선형 퍼지 PI+D 제어기의 설계)

  • Chai, Chang-Hyun;Lee, Sang-Tae;Ryu, Chang-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2839-2842
    • /
    • 1999
  • This paper describes the design of fuzzy PID controller using simplified indirect inference method. First, the fuzzy PID controller is derived from the conventional continuous time linear PID controller. Then the fuzzification, control-rule base, and defuzzification using SIIM in the design of the fuzzy controller are discussed in detail. The resulting controller is a discrete time fuzzy version of the conventional PID controller, which has the same linear structure. but are nonlinear functions of the input signals. The proposed controller enhances the self-tuning control capability, particularly when the process to be controlled is nonlinear. When the SIIM is applied, the fuzzy inference results can be calculated with splitting fuzzy variables into each action component and are determined as the functional form of corresponding variables. So the proposed method has the capability of the high speed inference and adapting with increasing the number of the fuzzy input variables easily. Computer simulation results have demonstrated the superior to the control performance of the one proposed by D. Misir et al.

  • PDF

Speed Control of SRM by Pl Controller with Fuzzy Logic Modifier (Fuzzy Logic Modifier를 가진 Pl 제어기에 의한 스위치드 리럭턴스 전동기의 속도제어)

  • Kim, Bo-Hyung;Kim, Jae-Mun;Won, Chung-Yuen
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.299-308
    • /
    • 1998
  • In this paper, reliable switched reluctance motor(SRM) drive system and 4-rule based fuzzy logic modifier(FLM) of the conventional PI controller are presented. The i80C196KC, low-cost one-chip microcontroller is used for designing SRM drive controller which include the speed controller and the starting sequence. The fuzzy logic modifier which exhibits a stabilizing effects on the closed-loop system, has good robustness regarding the improperly tuned PI controller. The simulation and experimental results are performed to verify the capability of proposed control method on 6/4 salient type SRM.

  • PDF

High Performance Control of SynRM Drive using Space Vector PWM of FAM-PI (FAM-PI의 공간벡터 PWM을 이용한 SynRM 드라이브의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Chul-Ho;Jung, Byung-Jin;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.119-121
    • /
    • 2008
  • This paper is proposed a high Performance speed control of the synchronous reluctance motor through the SV-PWM(Space Vector Pulse Width Modulation) of FAM-PI(Fuzzy Adaptive Mechanism-PI). SV-PWM is controlled using FAM-PI control. SV-PWM can be maximum used maximum do link voltage and is excellent control method due to characteristic to reducing harmonic more than others. Fuzzy control has a advantage which can be robustly controlled. FAM-PI controller is changed fixed gain of PI controller using fuzzy adaptive mechanism(FAM) to match operating condition. The results on a speed controller of IPMSM are presented to show the effectiveness of the proposed gain tuner. And this controller is better than the fixed gains one in terms of robustness, even under great variations of operating conditions and load disturbance.

  • PDF