• Title/Summary/Keyword: fuzzy - controller

Search Result 2,728, Processing Time 0.043 seconds

Design of Hybrid Smith-Predictor Fuzzy Controller Using Reduction Model (축소 모델을 이용한 하이브리드 스미스 퍼지 제어기 설계)

  • Cho, Joon-Ho;Hwang, Hyung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.444-451
    • /
    • 2007
  • In this paper, we propose an improved reduction model and a reduction model-based hybrid smith-predictor fuzzy controller. The transient and steady-state responsed of the reduction model was evaluated. In tuning the controller, the parameters of PID and the factors fuzzy controllers were obtained from the reduced model and by using genetic algorithms, respectively. Simulation examples demonstrated a better performance of the proposed controller than conventional ones.

PID Control with Fuzzy Compensation for Electric Power Generation Unit (보상형 퍼지알고리즘을 이용한 전력발전기의 PID 제어)

  • Hak Roh, Lee
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.217-220
    • /
    • 2004
  • Controller that is designed in this paper is form that apply PID controller about Fuzzy algorithm. Fuzzy Controller that using this paper is can speak that compensation style fuzzy controller as form to solidify action of PID controller for plant. This is not form that autotuning the each PID coefficient. We Apply and examined the response character to AGC(Automatic Generation Control) system using designed controller.

  • PDF

Development of Control Algorithm for Auto-Vehicle (자동차 무인화를 위한 제어알고리즘 개발)

  • Bae, Jong-Il;Hwang, Jong-Duck
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1931-1932
    • /
    • 2008
  • To demonstration the efficiency of fuzzy logic controller, we carried out simulation with a automobile's transfer function. First, we designed the PID controller by using Ziegler-Nichols tunning method. Second, we calculated time response for each controller, then we compared the speed patterns of fuzzy controlled system and PID controlled system. Also we compared the difference of input variable. By comparing two controller's response, we can confirm the merit of fuzzy controller about comfortability. Fuzzy controller can reduce input changing frequency.

  • PDF

Adaptive Active Noise Control Using Neuro-Fuzzy Controller (뉴로-퍼지제어기를 이용한 적응 능동소음제어)

  • Kim, Jong-Woo;Kong, Seong-Gon
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.2879-2881
    • /
    • 1999
  • This paper presents the adaptive Active Noise Control(ANC) system using the Neuro-Fuzzy controller. In general, the character of noise is time-varing and nonlinear Thus controller must have the adaptivness so that applied in Active Noise Control system to cancel the noise. This paper propose the Neuro-Fuzzy controller trained with back-propagation teaming algorithm to optimize the parameters of controller The objects of this paper are cancel the noise, extract the original(speech) signal polluted by noise and design the Neuro-Fuzzy controller.

  • PDF

Fuzzy-supervised nonlinear $H_{\infty}$ controller design for robot manipulator (로봇 매니퓰레이터를 위한 퍼지 감독자 비선형 $H_{\infty}$ 제어기의 설계)

  • 박광성;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.143-146
    • /
    • 1997
  • In this paper, we propose a fuzzy-supervised nonlinear H$_{\infty}$ controller which guarantees the robustness and has exact tracking performance for robot manipulator with system parameter uncertainty and exogenous disturbance, The proposed controller which is based on robotic H$_{\infty}$ controller has fuzzy supervisor which decides the optimal control input weighting value through fuzzy making-decision process. Owing to the fuzzy supervisor, The proposed controller can take the optimal control input. Then, we will apply the proposed controller to rigid robot manipulator to verify the performance of our controller.r.

  • PDF

Development of Fuzzy Controller for Electric Power Steering Considering Steering Feel (조향감을 고려한 자동차용 전동조향장치의 퍼지제어기의 개발)

  • Hahn, Chang-Su;Rhee, Meung-Ho;Park, Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.50-58
    • /
    • 2002
  • The test method using simulator to objectively measure the steering feel from several drivers was proposed. It has also described the ideas to analyse the principal factors affecting the steering feel of the driver using the correlation analysis of the measured data and the questionnaire. Proportional Derivative(PD) controller has been used to measure the steering feel, and the control parameters have been selected to obtain the optimal steering feel. Membership frictions of Sugeno fuzzy model are constructed from the assist torque values calculated from PD controller at each steering state. Moreover to verify the performance, this fuzzy controller has been compared with the another fuzzy controller of which membership frictions are derived from the knowledge of drivers. As a result it can be concluded that the proposed fuzzy controller improves the steering feel at each steering state more than any other conventional methods.

Design of Sliding Mode Fuzzy-Model-Based Controller Using Genetic Algorithms

  • Chang, Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.7
    • /
    • pp.615-620
    • /
    • 2001
  • This paper addresses the design of sliding model fuzzy-model-based controller using genetic algorithms. In general, the construction of fuzzy logic controllers has difficulties for the lack of systematic design procedure. To release this difficulties, the sliding model fuzzy-model-based controllers was presented by authors. In this proposed method, the fuzzy model, which represents the local dynamic behavior of the given nonlinear system, is utilized to construct the controller. The overall controller consists of the local compensators which compensate the local dynamic linear model and the feed-forward controller which is designed via sliding mode control theory. Although, the stability and the performance is guaranteed by the proposed method, some design parameters have to be chosen by the designer manually. This problem can be solved by using genetic algorithms. The proposed method tunes the parameters of the controller, by which the reasonable accuracy and the control effort is achieved. The validity and the efficiency of the proposed method are verified through simulations.

  • PDF

Decision of Optimum Cycle of Traffic Junction Vehicle Signal Control using Fuzzy Identification Algorithm (퍼지 동정 알고리즘을 이용한 교차로 교통 신호등 제어의 최적 주기 결정)

  • 진현수;김재필;김종원;홍완혜;김성환
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.6
    • /
    • pp.100-108
    • /
    • 1993
  • In this paper, noticing the point of human's ability which appropriately cope with vague conditions, we design fuzzy traffic signal light controller similar to human's distinction ability and decide the optimum cycle most suited to any traffic junction using fuzzy identification algorithm. In this study, for the control output decision process we design fuzzy controller better than electronic vehicle actuated controller in performance. We propose the cycle decision method which is not limited by the variance of traffic junction vehicle number through overcoming the limit of Webster's method which is adopted by the fixed cycle controller. Simulated experimental results show that fuzzy controller and fuzzy identification algorithm are better than the existing electronic vehicle actuated controller and fixed cycle controller in delay time per vehicle.

  • PDF

Implementation of Adaptive Impedance Controller using Fuzzy Inference (퍼지추론을 이용한 적응 임피던스 제어기의 구현)

  • Lim, Yong-Taek;Kim, Seung-Woo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.9
    • /
    • pp.423-429
    • /
    • 2001
  • This paper proposes adaptive impedance control algorithm using fuzzy inference when robot contacts with its environments. The characteristics of the adaptive impedance controller is to adapt with parametric uncertainty and nonlinear conditions. The control algorithm is to join impedance controller with fuzzy inference engine. The proposed control method overcomes the problem of impedance controller using gain-tuning algorithm of fuzzy inference engine. We implemented an experimental set-up consisting of environment-generated one-link robot system and DSP system for controller development. We apply the adaptive fuzzy impedance controller to one-link root system, and it shows the good performance on regulating the interactive force in case of contacting with arbitrary environment.

  • PDF

Three-Phase Z-Source PWM Rectifier Based on the DC Voltage Fuzzy Control (직류전압 퍼지 제어 기반의 3상 Z-소스 PWM 정류기)

  • Qiu, Xiao-Dong;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.466-476
    • /
    • 2013
  • This paper describes a fuzzy control method to control the output voltage of the three-phase Z-source PWM rectifier. A fuzzy control system is a control system based on fuzzy logic, and the fuzzy controller uses a single input fuzzy theory with its fuzzification. Analytical structure of the simplest fuzzy controller is derived through the triangular membership functions with its fuzzification. By setting the membership functions of the fuzzy rules, fuzzy control is achieved. The PI portion of the output DC voltage controller is controlled by fuzzy method. To confirm the validity of the proposed method, the simulation and experiment were performed, The simulation is performed with PSIM and MATLAB/SIMULINK. For the experiment, we used a DSP(TMS320F28335) controller to compute the reference value and generate the PWM pulses. For the transient state performance of the output DC voltage control of Z-source PWM rectifier, the PI controller and fuzzy controller were compared, also the conventional PWM rectifier and Z-source PWM rectifier were compared. From the results, the Z-source rectifier could allow to buck or boost of the output DC voltage. Through the analysis of the transient state, we could observe that the fuzzy controller has better performance than the conventional PI controller.