• Title/Summary/Keyword: fundamental frequency component

Search Result 112, Processing Time 0.066 seconds

On a Detection for the Fundamental Frequency of Speech Signals (음성신호의기본주파수 검출)

  • 배명진
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06c
    • /
    • pp.42-47
    • /
    • 1994
  • A pitch detector is an essential component in a variety of speech processing systems. Besides providing valuable insights into the nature of the exciation source for speech production, the pitch contour of an utterance is useful for recognizing speakers, aids-to-the handicapped, and is required in almost all speech analysis-synthesis system. Because of the importance of the pitch detection, a wide variety algorithms for pitch detection have been proposed in speech procesing literature. Thus, in this paper we discuss th evarious type of pitch detection algorithms which have been proposed until now. Then we provide th eperformance measurements for seven pitch detection algorithms.

  • PDF

Finite Element Analysis of the Transient Characteristics of a Superconducting A.C. Generator (유한요소법에 의한 초전도교류 발전기의 과도 특성 해석)

  • 한성진;배동진
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.24-30
    • /
    • 1991
  • This paper deals with the analysis of the transient characteristics of a superconducting a.c. generator(SCG) using Finite Element Method. Since the magnetic field induced by the field current and the armature currents are not sinusoidally distributed in a generator, the conventional equivalent circuit method, in general, uses the fundamental component only and is done in frequency domain. But the finite element analysis makes it possible to analyze the transient magnetic field distribution and the electrical characteristics of the double shields of SCG in time domain.

  • PDF

A Study on the 3 phase 5 level PWM inverter reducing harmonics (고조파 저감형 3상 5레벨 PWM 인버터에 관한 연구)

  • 송언빈
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.80-84
    • /
    • 1995
  • ABSTRACT - This paper presents a software based 3 phase 5 level pulse-width modulation(PWM) inverter to reduce total harmonic distortion. The proposed modulation technique can reduce total harmonic distortion and significantly improve the performance of the inverter. In the modulation mode where the frequency ratio is 36 and modulation index is 1.2∼2.0, harmonic components have been mostly eliminated and the magnitude of fundamental component have been maximized by the 3 phase 5 level PWM inverter.

  • PDF

Ultrasound Harmonic Imaging Method based on Harmonic Quadrature Demodulation (하모닉 직교 방식의 초음파 고조파 영상화 기법)

  • Kim, Sang-Min;Song, Jae-Hee;Song, Tai-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.1
    • /
    • pp.79-88
    • /
    • 2009
  • A harmonic quadrature demodulation method to extract the second harmonic component from focused ultrasound signals after a single transmit-receive event is proposed. In the proposed method, the focused ultrasound signal is converted into baseband inphase and quadrature components by multiplying with sine and cosine signals both having twice the center frequency of the transmitted signal and filtering the two modulated signals. The quadrature component is then passed through a Hilbert filter to be added to the inphase component, which leaves only the envelope of the second harmonic component. A novel phase estimation technique is employed in the proposed method to avoid the phase mismatch between the focused signal and the two modulating signals. The proposed method is verified through both theoretical analysis and computer simulations. It is shown that compared to the pulse inversion scheme the proposed method provides almost the same results for stationary targets and significantly improved harmonic to fundamental ratio for moving targets.

A Study on the Estimation Technique of Frequency in the Power System using FIR Filter (FIR 필터를 이용한 전력계통 주파수 추정기법에 관한 연구)

  • Nam, S.B.;Lee, H.G.;Park, C.W.;Shin, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.80-85
    • /
    • 2001
  • Frequency is an important operating parameter of a power system. Frequency of a power system remains constant if sum of all the loads plus losses equals total generation in the system. However, the frequency starts to decrease if total generation is less than the sum of loads and tosses. On the other hand, the system frequency increases if total generation exceeds the sum of loads and losses. Electric power systems sustain transient frequency swings whenever the balance between generation and load does not no longer hold. To cope with this Constraints, it requires an accurate and high speedy frequency deviation estimation technique and suitable adjustment to obtain the power system energy balance. The fundamental frequency component of 3-phase signal is first extracted by using an algorithm based on FIR(finite duration impulse response) filter, a phase angle of a voltage. The rate change of the phase angle is used for estimation and speed in its process. Also, to confirm the validity of the proposed algorithm, the simulation results obtained by using EMTP(electro magnetic transients program) are shown.

  • PDF

Analysis of Dynamic Characteristics Change of Middle-Sized Bus by Attachment of Trim Components (트림 부품의 부착에 따른 중형 버스의 동특성 변화 분석)

  • 이상범;임홍재
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.88-93
    • /
    • 2004
  • In general, a fundamental structural design consideration for an automobile is the overall dynamic behavior in bending and torsion. Dynamic behavior of the automobile are mainly influenced by the structural stiffness of B.I.W.(body-in-white) and the physical property of trim components. In this paper, the modeling techniques for various trim components of middle-sized bus are presented, and the dynamic effects of the trim components on the vibration characteristics of the bus are investigated. The $1^{st}$ torsional frequency is decreased by attaching windshield and backlite to the B.I.W., but the $1^{st}$ vertical bending frequency and the $1^{st}$ lateral bending frequency are increased. The natural frequencies of the bus are decreased by attaching doors and windows. And also, the natural frequencies of the bus are large decreased by attaching seats, instrument panel etc. The study shows that the dynamic characteristics of the bus can be effectively predicted in the initial design stage.

Multi-level Inverter Using 3-Phase isolated Transformers (3상 절연형 변압기를 이용한 다중레벨)

  • Lee, Hwa-Chun;Song, Sung-Gun;Park, Sung-Jun;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1134-1135
    • /
    • 2007
  • In this paper, we proposed the isolated multi-level inverter using 3-phase transformers. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformer could be reduced comparing with an exiting 3-phase multi-level inverter using single phase transformer. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching losses can be reduced. Finally, we made a prototype inverter to clarify the proposed electric circuit and reasonableness of control signal.

  • PDF

Improvement of Output Characteristics by Triplen-Harmonics Injection in PWM Inverters (3배수차 고주파 주입에 의한 PWM인버터의 출력특성개선)

  • Lee, Sun-Ho;Joe, Jee-Won;Kim, Ho-Jin;Shin, Woo-Seok;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.295-300
    • /
    • 1990
  • This paper describes a new method to increase the fundamental output of PWM inverter by adding all triplen-harmonics to sinusoidal reference wave. As a result, the amplitude of the fundamental component is increased upto 21 percent compared with the conventional SPWM method, and hence the conversion efficiency of dc link is higher. Also as the commutation number of the inverter is decreased to two-thirds, the heating of the switch devices is reduced. In addition random carrier modulation is adopted to lower the acoustic noise at given frequency modulation index.

  • PDF

FUNDAMENTAL PERFORMANCE OF IMAGE CODING SCHEMES BASED ON MULTIPULSE MODEL

  • Kashiwagi, Takashi;Kobayashi, Daisuke;Koda, Hiromu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.825-829
    • /
    • 2009
  • In this paper, we examine the fundamental performance of image coding schemes based on multipulse model. First, we introduce several kinds of pulse search methods (i.e., correlation method, pulse overlap search method and pulse amplitude optimization method) for the model. These pulse search methods are derived from auto-correlation function of impulse responses and cross-correlation function between host signals and impulse responses. Next, we explain the basic procedure of multipulse image coding scheme, which uses the above pulse search methods in order to encode the high frequency component of an original image. Finally, by means of computer simulation for some test images, we examine the PSNR(Peak Signal-to-Noise Ratio) and computational complexity of these methods.

  • PDF

Fourier-Based PLL Applied for Selective Harmonic Estimation in Electric Power Systems

  • Santos, Claudio H.G.;Ferreira, Reginaldo V.;Silva, Sidelmo Magalhaes;Cardoso Filho, Braz J.
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.884-895
    • /
    • 2013
  • In this paper, the Fourier-based PLL (Phase-locked Loop) is introduced with a new structure, capable of selective harmonic detection in single and three-phase systems. The application of the FB-PLL to harmonic detection is discussed and a new model applicable to three-phase systems is introduced. An analysis of the convergence of the FB-PLL based on a linear model is presented. Simulation and experimental results are included for performance analysis and to support the theoretical development. The decomposition of an input signal in its harmonic components using the Fourier theory is based on previous knowledge of the signal fundamental frequency, which cannot be easily implemented with input signals with varying frequencies or subjected to phase-angle jumps. In this scenario, the main contribution of this paper is the association of a phase-locked loop system, with a harmonic decomposition and reconstruction method, based on the well-established Fourier theory, to allow for the tracking of the fundamental component and desired harmonics from distorted input signals with a varying frequency, amplitude and phase-angle. The application of the proposed technique in three-phase systems is supported by results obtained under unbalanced and voltage sag conditions.