• Title/Summary/Keyword: functional peptide

Search Result 265, Processing Time 0.024 seconds

Expression of Functional Pentameric Heat-Labile Enterotoxin B Subunit of Escherichia coli in Saccharomyces cerevisiae

  • Lim, Jung-Gu;Kim, Jung-Ae;Chung, Hea-Jong;Kim, Tae-Geum;Kim, Jung-Mi;Lee, Kyung-Ryul;Park, Seung-Moon;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.5
    • /
    • pp.502-510
    • /
    • 2009
  • Although the Escherichia coli heat-labile enterotoxin B subunit (LTB) has already been expressed in several different systems, including prokaryotic and eukaryotic organisms, studies regarding the synthesis of LTB into oligomeric structures of pentameric size in the budding yeast Saccharomyces cerevisiae have been limited. Therefore, this study used a functional signal peptide of the amylase 1A protein from rice to direct the yeast-expressed LTB towards the endoplasmci reticulum to oligomerize with the expected pentameric size. The expression and assembly of the recombinant LTB were confirmed in both the cell-free extract and culture media of the recombinant strain using a Western blot analysis. The binding of the LTB pentamers to intestinal epithelial cell membrane glycolipid receptors was further verified using a GM1-ganglioside enzyme-linked inmmunosorbent assay (GM1-ELISA). On the basis of the GM1-ELISA results, pentameric LTB proteins comprised approximately 0.5-2.0% of the total soluble proteins, and the maximum quantity of secreted LTB was estimated to be 3 mg/l after a 3-day cultivation period. Consequently, the synthesis of LTB monomers and their assembly into biologically active aligomers in a recombinant S. cerevisiae strain demonstrated the feasibility of using a GRAS microorganism-based adjuvant, as well as the development of carriers against mucosal disease.

Processing and Biological Activity of Gelatin Hydrolysate from Branchiostegus japonicus Scales (옥돔(Branchiostegus japonicus) 비늘 유래 젤라틴의 가수분해 및 가수분해물의 기능성)

  • Ahn, Yong-Seok;Lee, Won-Woo;Lee, Seung-Hong;Ahn, Gin-Nae;Ko, Chang-Ik;Oh, Chang-Kyung;Oh, Myung-Cheol;Kim, Dong-Woo;Jeon, You-Jin;Kim, Soo-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.5
    • /
    • pp.417-425
    • /
    • 2009
  • The potential utility of fish scales to the functional food industry has been investigated due to its antioxidant and antihypertensive characteristics. In this study, we report on the reactive oxygen species (ROS) scavenging and angiotensin I converting enzyme (ACE) inhibitory activities of gelatin hydrolysates processed from Branchiostegus japonicus scales, which are also high in protein content (about 46.1%). We prepared the enzymatic gelatin hydrolysates with four proteases (${\alpha}$-chymotrypsin, Alcalase, Neutrase and trypsin) from B. japonicus scale gelatin, which was prepared according to different reaction times, substrate/enzyme ratios and substrate concentrations. The enzymatic hydrolytic degrees of the gelatin increased time-dependently up to 6 hrs, while the Alcalase gelatin hydrolysates showed the highest hydrolysis degrees compared to the others. Furthermore, gelatin hydrolysates of Neutrase and ${\alpha}$-chymotrypsin showed the highest DPPH radical and $H_2O_2$ scavenging activities ($IC_{50}$ value; 9.18 mg/mL and 9.74 mg/mL), respectively. However, the activities were not significant (P<0.05). We also observed that the four gelatin hydrolysates significantly increased ACE inhibitory activities from approximately 20% to 60% (P<0.05), Among them, the Alcalase gelatin hydrolysates showed the higher ACE inhibitory activity ($IC_{50}$ value; 0.73 mg/mL) compared to the others. These results suggest that the enzymatic gelatin hydrolysates prepared from B. japonicus scales may possess a potentially useful function as an ACE inhibitory agent. As such, the utility of B. japonicus scales should be given due consideration for application in the functional food industry.

Study of Cosmeceutical Activities of Hovenia dulcis var. koreana Nakai Extracts (헛개나무 추출물의 화장품 생리활성에 관한 연구)

  • Kim, Sea-Hyun;Jun, Dong-Ha;Jang, Min-Jung;Lee, Jin-Tae;Lee, Chang-Eon;Han, Jin-Gyu;Kim, Jin-Chul;Lee, Do-Hyung
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.6
    • /
    • pp.836-842
    • /
    • 2010
  • Hovenia dulcis var. koreana Nakai has been reported to liver function improvement effect as functional materials for food and medicine. On these facts, biological activity and safety test were conducted to evaluate biological activities of the fruit petiole and root extracts of H. dulcis as a potential cosmeceutical ingredient. Cosmeceutica activities of different extracts were examined by l.l-diphenyl-2-picrylhydrazyl (DPPH) radical generation, the ABTS+ cation decolorization, tyrosinase activity, collagenase activity and elastase activity compared with the properties of the commercial antioxidant butylated hydroxytoluene (BHT) and L-ascorbic acid (AA). The antioxidant activities HDFW, HDFE, HDRW and HDRE were 83.6%, 39.6%, 85.9% and 74.5% in DPPH assay, 99.5%, 13.7%, 96.4% and 88.6% in ABTS assay. Tyrosinase inhibitiory activities HDFW were 56.0% at 1,000 ppm. Measured the inhibition effect of the H. dulcis about collagenase and elastase where break the peptide bonds in collagen and enzyme from the class of proteases where exists in the dermis. The H. dulcis was inhibition the two kind enzymesm, collagenase activities being on a high scale inhibition, was same concentration. Uses the anti oxidation effect and a anti-wrinkle effect of this resultant H. dulcis and with the functional cosmetics use is thought with the fact that will be possible.

Molecular Cloning, Characterization and Functional Analysis of a 2C-methyl-D-erythritol 2, 4-cyclodiphosphate Synthase Gene from Ginkgo biloba

  • Gao, Shi;Lin, Juan;Liu, Xuefen;Deng, Zhongxiang;Li, Yingjun;Sun, Xiaofen;Tang, Kexuan
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.502-510
    • /
    • 2006
  • 2C-methyl-D-erythritol 2, 4-cyclodiphosphate synthase (MECPS, EC: 4.6.1.12) is the fifth enzyme of the non-mevalonate terpenoid pathway for isopentenyl diphosphate biosynthesis and is involved in the methylerythritol phosphate (MEP) pathway for ginkgolide biosynthesis. The full-length mecps cDNA sequence (designated as Gbmecps) was cloned and characterized for the first time from gymnosperm plant species, Ginkgo biloba, using RACE (rapid amplification of cDNA ends) technique. The full-length cDNA of Gbmecps was 874 bp containing a 720 bp open reading frame (ORF) encoding a peptide of 239 amino acids with a calculated molecular mass of 26.03 kDa and an isoelectric point of 8.83. Comparative and bioinformatic analyses revealed that GbMECPS showed extensive homology with MECPSs from other species and contained conserved residues owned by the MECPS protein family. Phylogenetic analysis indicated that GbMECPS was more ancient than other plant MECPSs. Tissue expression pattern analysis indicated that GbMECPS expressed the highest in roots, followed by in leaves, and the lowest in seeds. The color complementation assay indicated that GbMECPS could accelerate the accumulation of $\beta$-carotene. The cloning, characterization and functional analysis of GbMECPS will be helpful to understand more about the role of MECPS involved in the ginkgolides biosynthesis at the molecular level.

Protein tRNA Mimicry in Translation Termination

  • Nakamura, Yoshikazu
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.83-89
    • /
    • 2001
  • Recent advances in the structural and molecular biology uncovered that a set of translation factors resembles a tRNA shape and, in one case, even mimics a tRNA function for deciphering the genetic :ode. Nature must have evolved this 'art' of molecular mimicry between protein and ribonucleic acid using different protein architectures to fulfill the requirement of a ribosome 'machine'. Termination of protein synthesis takes place on the ribosomes as a response to a stop, rather than a sense, codon in the 'decoding' site (A site). Translation termination requires two classes of polypeptide release factors (RFs): a class-I factor, codon-specific RFs (RFI and RF2 in prokaryotes; eRFI in eukaryotes), and a class-IT factor, non-specific RFs (RF3 in prokaryotes; eRF3 in eukaryotes) that bind guanine nucleotides and stimulate class-I RF activity. The underlying mechanism for translation termination represents a long-standing coding problem of considerable interest since it entails protein-RNA recognition instead of the well-understood codon-anticodon pairing during the mRNA-tRNA interaction. Molecular mimicry between protein and nucleic acid is a novel concept in biology, proposed in 1995 from three crystallographic discoveries, one, on protein-RNA mimicry, and the other two, on protein-DNA mimicry. Nyborg, Clark and colleagues have first described this concept when they solved the crystal structure of elongation factor EF- Tu:GTP:aminoacyl-tRNA ternary complex and found its overall structural similarity with another elongation factor EF-G including the resemblance of part of EF-G to the anticodon stem of tRNA (Nissen et al. 1995). Protein mimicry of DNA has been shown in the crystal structure of the uracil-DNA glycosylase-uracil glycosylase inhibitor protein complex (Mol et al. 1995; Savva and Pear 1995) as well as in the NMR structure of transcription factor TBP-TA $F_{II}$ 230 complex (Liu et al. 1998). Consistent with this discovery, functional mimicry of a major autoantigenic epitope of the human insulin receptor by RNA has been suggested (Doudna et al. 1995) but its nature of mimic is. still largely unknown. The milestone of functional mimicry between protein and nucleic acid has been achieved by the discovery of 'peptide anticodon' that deciphers stop codons in mRNA (Ito et al. 2000). It is surprising that it took 4 decades since the discovery of the genetic code to figure out the basic mechanisms behind the deciphering of its 64 codons.

  • PDF

Inhibitory Activity on Angiotensin Converting Enzyme and Antioxidant Activity of Hovenia dulcis Thunb. Cortex Extract (헛개나무의 Angiotensin 전환 효소 저해 및 항산화 활성)

  • Lee, Seung-Eun;Bang, Jin-Ki;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.1
    • /
    • pp.79-84
    • /
    • 2004
  • To develop a new functional materials, angiotensin converting enzyme (ACE) inhibitory activity, antioxidant effect and total phenolic content of Hovenia dulcis Thunb. cortex were evaluated. Methanol and water extract of H. dulcis inhibited ACE by 81% and 76%, respectively, at the concentration of $4,000\;{\mu}g\;m{\ell}^{-1}$ which were similar level with that (85%) of commercial peptide-type ACE inhibitor. Superoxide radical scavenging activity of two extracts $(99.5%{\sim}99.9%)$ were stronger than that (69%) of ascorbic acid at the final concentration of $200\;{\mu}g\;m{\ell}^{-1}$. Among the solvent fractions, ether and ethylacetate fraction showed also potent scavenging activities (91% and 85%) for superoxide radical. Inhibitory activities of two extracts on oxidation of human low density lipoprotein (LDL) which were similar with that of ${\alpha}-tocopherol$, were higher than 80% at the concentration of $50\;{\mu}g\;m{\ell}^{-1}$. Total phenol contents of methanol and water extracts were 7.2% and 3.6%, respectively, and that of ethylacetate showed the highest value as 60.8% among the solvent fractions. Therefore, it has been suggested that H. dulcis cortex could be a effective anti-hypertention and antioxidant resource to develope a new functional material.

A Study on the Hydrolysis of p-Nitrophenyl Carboxylates by Micellar Surfactants Catalysts Involving Histidyl Residue (히스티딜기등을 포함하는 미셀성 계면활성제를 촉매로 사용한 파라니트로페닐 에스테르의 가수분해반응에 관한 연구)

  • Won Fae Koo;Choon Pyo Hong
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.1
    • /
    • pp.3-10
    • /
    • 1989
  • In order to obtain a clue in understanding enzymatic hydrolysis in which the His-Cys moieties of papain protease is involved, we prepared cationic peptide-sufactants bearing histidyl, cysteinyl, and both histydyl and cysteinyl residues. Their catalytic efficiency toward the hydrolysis of PNPL were investigated in comicellar phases formed with $N^{+}C_{2}CysC_{12}$, $N^{+}C_{2}HisC_{12}$, $N^{+}C_{2}HisCysC_{12}$ increased markedly in the same order compared with that of $N^{+}C_{2}AlaC_{12}$. The markedly increased catalytic effects are attributed to the imidazole groups of $N^{+}C_{2}HisC_{12}$ and the thiol groups of $N^{+}C_{2}CysC_{12}$, and the large catalytic efficiency of $N^{+}C_{2}HisCysC_{12}$, is considered due to the interaction of the imidazole and the thiol groups. In order to investigate catalytic activities, rate constants for the functional groups, km* and dissociation constants, pKa have been determined. The results showed that $k^{\ast}_m$ and pKa of the imidazole groups were $7.91{\times}10^{-4}S^{-1}$ and 6.49, and those of the thiol groups were $6.00{\times}10^{-4}S^{-1}$ and 10.50. The catalytic effects of comicellar systems on the hydrolysis of p-nitrophenyl esters has increased according to the increasing size of the alkyl carbon number. Therefore, the catalytic effects have been increasing by the interaction of micellar hydrophobic parts and substrates as well as action of the functional groups.

  • PDF

Flavonoid production and antioxidant activity effect by lactic acid bacteria fermentation of deer antler extract (녹용추출물의 유산균 발효에 의한 플라보노이드 생성과 항산화활성 효과)

  • Kim, Hyun-Kyoung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.2
    • /
    • pp.399-408
    • /
    • 2022
  • As part of research on the development of functional materials for antlers, lactic acid fermentation of antler extract was performed. It was intended to develop a functional material with enhanced total polyphenol and flavonoid content and enhanced antioxidant activity. During the fermentation of lactic acid bacteria, the number of proliferation, total polyphenol and total flavonoid content, DPPH radical scavenging and antioxidant activity were quantified and evaluated. As a result of adding these four types of lactic acid bacteria to the antler water extract substrate, the number of lactic acid bacteria measured was 2.04~5.00×107. Meanwhile, a protease (Baciullus amyloliquefaciens culture: Maxazyme NNP DS) was added to the antler extract to decompose the peptide bonds of the contained proteins. Then, these four types of lactic acid bacteria were added and the number of lactic acid bacteria increased to 2.84×107~2.21×108 as the result of culture. The total polyphenol contents were 4.82~6.26g/mL in the lactic acid bacteria fermentation extracts, and after the reaction of protease enzyme and lactic fermentation, increased to 14.27~20.58 g/mL. The total flavonoid contents were 1.52~2.21 g/ml in the lactic acid bacteria fermentation extracts, and after the protease reaction and fermentation, increased to 5.59~8.11 mg/mL. DPPH radical scavenging activities of lactic acid bacteria fermentation extracts was 17.03~22.75%, but after the protease reaction and fermentation, remarkably increased to 32.82~42.90%.

Anti-neuroinflammatory Effect of Teleogryllus emma Derived Teleogryllusine in LPS-stimulated BV-2 Microglia (BV-2 미세아교세포에서 왕귀뚜라미 유래 Teleogryllusine의 신경염증 억제 효과)

  • Seo, Minchul;Shin, Yong Pyo;Lee, Hwa Jeong;Baek, Minhee;Lee, Joon Ha;Kim, In-Woo;Hwang, Jae-Sam;Kim, Mi-Ae
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.999-1006
    • /
    • 2020
  • The suppression of neuroinflammatory responses in microglial cells, well known as the main immune cells in the central nervous system (CNS), are considered a key target for improving the progression of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. Teleogryllus emma is widely consumed around the world for its broad-spectrum therapeutic effect. In a previous work, we performed transcriptome analysis on T. emma in order to obtain the diversity and activity of its antimicrobial peptides (AMPs). AMPs are found in a variety of species, from microorganisms to mammals. They have received much attention as candidates oftherapeutic drugs for the treatment of inflammation-associated diseases. In this study, we investigated the anti-neuroinflammatory effect of Teleogryllusine (VKWKRLNNNKVLQKIYFVKI-NH2) derived from T. emma on lipopolysaccharide (LPS) induced BV-2 microglia cells. Teleogryllusine significantly inhibited nitric oxide (NO) production without cytotoxicity, and reducing pro-inflammatory enzymes expression such as inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In addition, Telegryllusine also inhibited the expression of pro-inflammatory cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) through down-regulation of the mitogen-activated protein kinases (MAPKs) and nuclear factor kappa B (NF-κB) signaling pathway. These results suggest that T. emma-derived Teleogryllusine could be a good source of functional substances that prevent neuroinflammation and neurodegenerative diseases.

Biochemical Characterization of a Novel Thermostable Esterase from the Metagenome of Dokdo Islets Marine Sediment (독도 심해토 메타게놈 유래 신규 내열성 에스테라아제의 생화학적 특성규명)

  • Lee, Chang-Muk;Seo, Sohyeon;Kim, Su-Yeon;Song, Jaeeun;Sim, Joon-Soo;Hahn, Bum-Soo;Kim, Dong-Hern;Yoon, Sang-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • A functional screen of 60,672 fosmid metagenomic clones amplified from marine sediment obtained from the Dokdo islets in Korea identified the gene EstES1, whose product, EstES1, displayed lipolytic properties on tributyrin-supplemented media. EstES1 is a 576 amino acid protein with a predicted molecular weight of 59.4 kDa including 37 N-terminal leader amino acids. EstES1 exhibited the highest sequence similarity (44%) to a carboxylesterase found in Haliangium ochraceum DSM14365. Phylogenetic analysis indicated that EstES1 belongs to a currently uncharacterized family of lipases. Within the conserved domain, EstES1 retains the catalytic triad that consists of the consensus penta-peptide motif, GESAG. EstES1 demonstrated a broad substrate specificity toward the long acyl group of ethyl esters (C2-C12), and its optimal activity was recorded toward p-Nitrophenyl butyrate (C4) at pH 9.0 and $40^{\circ}C$ (specific activity of 255.4 U/mg). The enzyme remained stable in the ranges of $60-65^{\circ}C$ and pH 9.0-10.5 and in the presence of methanol, ethanol, isopropanol, and dimethyl sulfoxide. Therefore, EstES1 has potential for use in industrial applications involving high temperature, organic solvents, and/or alkaline conditions.