Browse > Article
http://dx.doi.org/10.4014/jmb.0803.207

Expression of Functional Pentameric Heat-Labile Enterotoxin B Subunit of Escherichia coli in Saccharomyces cerevisiae  

Lim, Jung-Gu (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Kim, Jung-Ae (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Chung, Hea-Jong (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Kim, Tae-Geum (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Kim, Jung-Mi (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Lee, Kyung-Ryul (Department of Microbiology and Institute of Oral Bioscience, Chonbuk National University)
Park, Seung-Moon (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Yang, Moon-Sik (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Kim, Dae-Hyuk (Institute for Molecular Biology and Genetics, Research Center of Bioactive Materials, Chonbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.5, 2009 , pp. 502-510 More about this Journal
Abstract
Although the Escherichia coli heat-labile enterotoxin B subunit (LTB) has already been expressed in several different systems, including prokaryotic and eukaryotic organisms, studies regarding the synthesis of LTB into oligomeric structures of pentameric size in the budding yeast Saccharomyces cerevisiae have been limited. Therefore, this study used a functional signal peptide of the amylase 1A protein from rice to direct the yeast-expressed LTB towards the endoplasmci reticulum to oligomerize with the expected pentameric size. The expression and assembly of the recombinant LTB were confirmed in both the cell-free extract and culture media of the recombinant strain using a Western blot analysis. The binding of the LTB pentamers to intestinal epithelial cell membrane glycolipid receptors was further verified using a GM1-ganglioside enzyme-linked inmmunosorbent assay (GM1-ELISA). On the basis of the GM1-ELISA results, pentameric LTB proteins comprised approximately 0.5-2.0% of the total soluble proteins, and the maximum quantity of secreted LTB was estimated to be 3 mg/l after a 3-day cultivation period. Consequently, the synthesis of LTB monomers and their assembly into biologically active aligomers in a recombinant S. cerevisiae strain demonstrated the feasibility of using a GRAS microorganism-based adjuvant, as well as the development of carriers against mucosal disease.
Keywords
Enterotoxin B subunit; GM1-ELISA; Saccharomyces cerevisiae;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Haq, T. A., H. S. Mason, J. D. Clements, and C. J. Arntzen. 1995. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268: 714-716   DOI   PUBMED   ScienceOn
2 Hayward, C. M., P. O'aora, D. B. Young, G. E. Griffin, J. Thole, T. R. Hirst, L. R. Castello-Branco, and D. J. Lewis. 1999. Construction and murine immunogenicity of recombinant Bacille Calmette Gu\rin vaccines expressing the B subunit of Escherichia coli heat labile enterotoxin. Vaccine 17: 1272-1281   DOI   ScienceOn
3 Kang, T. J., S. C. Han, M. O. Jang, K. H. Kang, Y. S. Jang, and M. S. Yang. 2004. Enhanced expression of B-subunit of Escherichia coli heat-labile enterotoxin in tobacco by optimization of coding sequence. Appl. Biochem. Biotechnol. 117: 175-187   DOI   ScienceOn
4 Loison, G., A. Vidal, A. Findeli, C. Roitsch, J. M. Balloul, and Y. Lemoine. 1989. High level expression of a protective antigen of schistosomes in Saccharomyces cerevisiae. Yeast 5: 497-507   DOI   ScienceOn
5 Mo, A. Y., Y. S. Kim, S. M. Park, M. S. Yang, and D. H. Kim. 2005. Expression of fungal phytase on the cell surface of Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 10: 576-581   과학기술학회마을   DOI   ScienceOn
6 Rezaee, M. A., A. Rezaee, S. M. Moazzeni, A. H. Salmanian, Y. Yasuda, K. Tochikubo, S. N. Pirayeh, and M. Arzanlou. 2005. Expression of Escherichia coli heat-labile enterotoxin B subunit (LTB) in Saccharomyces cerevisiae. J. Microbiol. 43: 354-360   ScienceOn
7 Sixma, T. K., A. Aguirre, A. C. Terwisscha van Scheltinga, E. S. Wartna, K. H. Kalk, and W. G. Hol. 1992. Heat-labile enterotoxin crystal forms with variable A/$B_5$ orientation: Analysis of conformational flexibility. FEBS Lett. 305: 81-85   DOI   ScienceOn
8 Tsuji, T., K. Watanabe, and A. Miyama. 1995. Monomer of the B subunit of heat-labile enterotoxin from enterotoxigenic Escherichia coli has little ability to bind to GM1 ganglioside compared to its coligenoid. Microbiol. Immunol. 39: 817-819   DOI   PUBMED   ScienceOn
9 Fingerut, E., B. Gutter, R. Meir, D. Eliahoo, and J. Pitcovski. 2005. Vaccine and adjuvant activity of recombinant subunit B of E. coli enterotoxin produced in yeast. Vaccine 23: 4685-4696   DOI   ScienceOn
10 Feil, I. K., R. Reddy, L. de Haan, E. A. Merritt, F. van den Akker, D. R. Storm, and W. G. Hol. 1996. Protein engineering studies of A-chain loop 47-56 of Escherichia coli heat-labile enterotoxin point to a prominent role of this loop for cytotoxicity. Mol. Microbiol. 20:823-832   DOI   ScienceOn
11 Lim, Y. Y., S. M. Park, Y. S. Jang, M. S. Yang, and D. H. Kim. 2003. Production of a functional mouse interferon from recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 13: 537-543   ScienceOn
12 Merritt, E. A., S. E. Pronk, T. K. Sixma, K. H. Kalk, B. A. Van Zanten, and W. G. J. Hol. 1994. Structure of partially-activated E. coli heat-labile enterotoxin (LT) at 2.6 $\AA$ resolution. FEBS Lett. 337: 88-92   DOI   ScienceOn
13 Bradford, M. M. 1976. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
14 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
15 Sixma, T. K., S. E. Pronk, K. H. Kalk, E. S. Wartna, B. A. van Zanten, B. Witholt, and W. G. Hol. 1991. Crystal structure of a cholera toxin-related heat-labile enterotoxin from E. coli. Nature 351: 371-377   DOI   ScienceOn
16 Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168   PUBMED
17 Arakawa, T., D. K. Chong, J. L. Merritt, and W. H. Langridge. 1997. Expression of cholera toxin B subunit oligomers in transgenic potato plants. Transgenic Res. 6: 403-413   DOI   ScienceOn
18 Williams, N. A., T. R. Hirst, and T. O. Nashar. 1999. Immune modulation by the cholera-like enterotoxins: From adjuvant to therapeutic. Immunol. Today 20: 95-101   DOI   ScienceOn
19 Ge, L. and P. Rudolph. 1997. Simultaneous introduction of multiple mutations using overlap extension PRC. Biotechniques 22: 28-30   PUBMED   ScienceOn
20 Park, S. M., A. Y. Mo, Y. S. Jang, J. H. Lee, M. S. Yang, and D. H. Kim. 2004. Expression of a functional human tumor necrosis factor (hTNF)-$\alpha$ in yeast Saccharomyces cerevisiae. Biotech. Bioprocess Eng. 9: 292-296   DOI   ScienceOn
21 Dickinson, B. L. and J. D. Clements. 1995. Dissociation of Escherichia coli heat-labile enterotoxin adjuvanticity from ADP-ribosyltransferase activity. Infect. Immun. 63: 1617-1623   PUBMED   ScienceOn
22 Schonberger, O., T. R. Hirst, and O. Pines. 1991. Targeting and assembly of an oligomeric bacterial enterotoxoid in the endoplasmic reticulum of Saccharomyces cerevisiae. Mol. Microbiol. 5: 2663-2671   DOI   ScienceOn
23 Fattal-German, M. and B. Bizzini. 1992. Assessment of the anti-viral effect of a short-term oral treatment of mice with live Saccharomyces cerevisiae cells. Dev. Biol. Stand. 77: 115-120   PUBMED   ScienceOn
24 Goto, N., J. Maeyama, Y. Yasuda, M. Isaka, K. Matano, S. Kozuka, et al. 2000. Safety evaluation of recombinant cholera toxin B subunit produced by Bacillus brevis as a mucosal adjuvant. Vaccine 18: 2164-2171   DOI   ScienceOn
25 Kang, T. J., S. C. Han, M. S. Yang, and Y. S. Jang. 2006. Expression of synthetic neutralizing epitope of porcine epidemic diarrhea virus fused with synthetic B subunit of Escherichia coli heat-labile enterotoxin in tobacco plants. Protein Expr. Purif. 46: 16-22   DOI   ScienceOn
26 Liljeqvist, S., P. Samuelson, M. Hansson, T. N. Nguyen, H. Binz, and S. Stahl. 1997. Surface display of the cholera toxin B subunit on Staphylococcus xylosus and Staphylococcus carnosus. Appl. Environ. Microbiol. 63: 2481-2488   PUBMED   ScienceOn
27 Katz, D. E., A. J. DeLorimier, and M. K. Wolf. 2003. Oral immunization of adult volunteers with microencapsulated enterotoxigenic E. coli (ETEC) CS6 antigen. Vaccine 21: 341-346   DOI   ScienceOn
28 Shin, Y. M., T. H. Kwon, K. S. Kim, K. S. Chae, D. H. Kim, and M. S. Yang. 2001. Enhanced iron uptake of Saccharomyces cerevisiae by the heterologous expression of a tadpole ferritin gene. Appl. Env. Microbiol. 67: 1280-1283   DOI   ScienceOn
29 Kim, T. G., M. Y. Kim, B. G. Kim, T. J. Kang, Y. S. Kim, Y. S. Jang, C. J. Arntzen, and M. S. Yang. 2007. Synthesis and assembly of Escherichia coli heat-labile enterotoxin B subunit in transgenic lettuce (Lactuca sativa). Protein Expr. Purif. 51:22-27   DOI   ScienceOn
30 Hagiwar, Y., T. Tsuji, T. Iwasaki, S. Kadowaki, H. Asanuma, Z. Chen, et al. 2001. Effectiveness and safety of mutant Escherichia coli heat-labile enterotoxin(LT H44A) as an adjuvant for nasal influenza vaccine. Vaccine 19: 2071-2079   DOI   ScienceOn
31 Tochikubo, K. and Y. Yasuda. 2000. Principle of mucosal immunity and development of mucosal vaccines using cholera toxin B subunit and its related adjuvants. Rec. Res. Devel. Microbiol. 4: 387-405
32 Shon, J. H., E. S. Choi, B. H. Chung, D. J. Youn, and J. H. Seo. 1995. Process development of the production of recombinant hirudin in Saccharomyces cerevisiae: From upstream to downstream. Proc. Biochem. 30: 653-660   DOI   ScienceOn
33 Snider D. P. 1995. The mucosal adjuvant activities of ADPribosylating bacterial enterotoxins. Crit. Rev. Immunol. 15: 317-348   DOI   PUBMED   ScienceOn
34 Spangler, B. D. 1992. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 56: 622-647   PUBMED
35 Schellenberg, D., A. Bonington, C. M. Champion, R. Lancaster, S. Webb, and J. Main. 1994. Treatment of Clostridium difficile diarrhoea with brewer's yeast. Lancet 343: 171-172   PUBMED
36 Haan, L., W. Verweij, E. Agsteribbe, and J. Wilschut. 1998. The role of ADP-ribosylation and GM1-binding activity in the mucosal immunogenicity and adjuvanticity of the Escherichia coli heat-labile enterotoxin and Vibrio cholerae cholera toxin. Immunol. Cell Biol. 76: 270-279   DOI   ScienceOn
37 Purvis, I. J., A. J. E. Bettany, L. Loughlin, and A. J. P. Brown. 1987. Translation and stability of an Escherichia coli betagalactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 15: 7963-7974   DOI   ScienceOn
38 Lim, Y. Y., E. H. Park, J. H. Kim, S. M. Park, H. S. Jang, Y. J. Park, S. W. Yoon, M. S. Yang, and D. H. Kim. 2001. Enhanced and targeted expression of fungal phytase in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11: 915-921   ScienceOn
39 Lim, Y. Y., M. Y. Lee, B. W. Chung, S. M. Park, S. G. Park, H. S. Jang, M. S. Yang, and D. H. Kim. 2002. Expression of a functional human interleukin-18 in yeast. Enz. Microbial Technol. 30: 703-709   DOI   ScienceOn
40 Pohl, T. 1990. Concentration of proteins and removal of solutes. Methods Enzymol. 182: 68-83   DOI   PUBMED   ScienceOn
41 Yamamoto, T., T. Tamura, M. Ryoji, A. Kaji, T. Yokota, and T. Takano. 1982. Sequence analysis of the heat-labile enterotoxin subunit B gene originating in human enterotoxigenic Escherichia coli. J. Bacteriol. 152: 506-509   PUBMED
42 Brake, A. J., J. P. Merryweather, D. G. Coit, U. A. Heberlein, T. P. Masiary, G. T. Mullenback, M. S. Urdea, P. Valenzuela, and P. J. Barr. 1984. Alpha-factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 81: 4642-4646   DOI   ScienceOn
43 De Geus, B., M. Dol-Bosman, J. W. Scholten, W. Stok, and A. Bianchi. 1997. A comparison of natural and recombinant cholera toxin B subunit as stimulatory factors in intranasal immunization. Vaccine 15: 1110-1113   DOI   ScienceOn
44 Hirst, T. R. and J. Holmgren. 1987. Conformation of protein secreted across bacterial outer membranes: A study of enterotoxin translocation from Vibrio cholerae. Proc. Natl. Acad. Sci. U.S.A. 84: 7418-7422   DOI   ScienceOn
45 Lucke, N., T. Tsuji, and J. Holmgren. 1992. The adjuvant effect of Vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur. J. Immunol. 22: 2277-2281   DOI   ScienceOn
46 Schreuder, M. P., C. Deen, W. J. A. Boersma, P. H. Pouwels, and F. M. Klis. 1996. Yeast expressing hepatitis B virus surface antigen determinants on its surface: Implications for a possible oral vaccine. Vaccine 14: 383-388   DOI   ScienceOn
47 Steinsland, H., P. Valentiner-Branth, H. K. Gjessing, P. Aaby, K. Molbak, and H. Sommerfelt. 2003. Protection from natural infections with enterotoxigenic Escherichia coli: Longitudinal study. Lancet 362: 286-291   DOI   ScienceOn
48 Hirst, T. R. 1991. Assembly and secretion of oligomeric toxins in Gram negative bacteria. In J. E. Alouf and J. H. Freer (eds.), A Source Book of Bacterial Protein Toxins. Academic Press, London