• Title/Summary/Keyword: functional nanomaterials

Search Result 65, Processing Time 0.024 seconds

Polypropylene Reactive Nanocomposites with Functional Nanoclays

  • Phandee, Atinuch;Magaraphan, Rathanawan;Nithitanakul, Manit;Manuspiya, Hathaikarn
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.280-280
    • /
    • 2006
  • Na-bentonite (local clay mineral) and Na-montmorillonite were treated with quaternary alkylammonium cations. The effect of the molecular structure and functional groups of the surfactants on the organoclays was investigated by X-ray diffraction (XRD). For the preparation of nanocomposites, organoclays were melt-blended with polypropylene in a twin screw extruder and $Surlyn^{(R)$. ionomer was used as a reactive compatibilizer. The clay dispersions in the composites were investigated by X-ray diffraction (XRD). XRD spectra showed no peak at low angle indicated that the silicate clay layer has a nearly exfoliated dispersion in the polymer matrix. Thermal and mechanical properties of nanocomposites were higher than those of PP.

  • PDF

Nanotechnology in Meat Processing and Packaging: Potential Applications - A Review

  • Ramachandraiah, Karna;Han, Sung Gu;Chin, Koo Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.2
    • /
    • pp.290-302
    • /
    • 2015
  • Growing demand for sustainable production, increasing competition and consideration of health concerns have led the meat industries on a path to innovation. Meat industries across the world are focusing on the development of novel meat products and processes to meet consumer demand. Hence, a process innovation, like nanotechnology, can have a significant impact on the meat processing industry through the development of not only novel functional meat products, but also novel packaging for the products. The potential benefits of utilizing nanomaterials in food are improved bioavailability, antimicrobial effects, enhanced sensory acceptance and targeted delivery of bioactive compounds. However, challenges exist in the application of nanomaterials due to knowledge gaps in the production of ingredients such as nanopowders, stability of delivery systems in meat products and health risks caused by the same properties which also offer the benefits. For the success of nanotechnology in meat products, challenges in public acceptance, economics and the regulation of food processed with nanomaterials which may have the potential to persist, accumulate and lead to toxicity need to be addressed. So far, the most promising area for nanotechnology application seems to be in meat packaging, but the long term effects on human health and environment due to migration of the nanomaterials from the packaging needs to be studied further. The future of nanotechnology in meat products depends on the roles played by governments, regulatory agencies and manufacturers in addressing the challenges related to the application of nanomaterials in food.

Ordered Hybrid Nanomaterials from Self-Assembled Polymeric Building Blocks

  • Kim, Dong-Ha
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.309-309
    • /
    • 2006
  • Latest developments on hybrid nanostructured materials fabricated by applying self-assembly strategies on organic/inorganic nanotemplates are discussed. Within this frame, numerous functional nanomaterials including arrays of composite metal/semiconductor nanoparticles, planar waveguides and functional multilayer thin films are generated using self-assembled polymers as templates or building blocks. In particular, surface plasmon resonance based optical sensing is employed to investigate nanofabrication processes occurring in nanoscale dimention. We also suggest unprecedented pathways to hybrid supramolecular multilayer nanoarchitectures in 1D or 2D geometry via layer-by-layer self-assembly.

  • PDF

Performance Enhancement of Ion-Exchange Membranes Using Nanomaterials (나노물질을 이용한 이온교환막의 성능 향상)

  • Moon-Sung Kang
    • Membrane Journal
    • /
    • v.33 no.6
    • /
    • pp.315-324
    • /
    • 2023
  • Ion-exchange membrane (IEM), is a key component that determines the performance of the electro-membrane processes. In this review, the latest research trends in improving the performance of IEMs used in various electro-membrane processes through modification using carbon-based and metal-based nanomaterials are investigated. The nanomaterials can be introduced into IEMs through various methods. In particular, carbon-based nanomaterials can strengthen their interaction with polymer chains by introducing additional functional groups through chemical modification. Through this, not only can the ion conductivity of IEM be improved, but also the permselectivity can be improved through the sieving effect through the layered structure. Meanwhile, metal-based nanomaterials can improve permselectivity through sieving properties using the difference in hydration radius between target ions and excluded ions within a membrane by using the property of having a layered or porous structure. In addition, depending on the characteristics of the binder used, ion conductivity can be improved through interaction between nanomaterials and binders. From this review, it can be seen that the properties of IEMs can be effectively controlled using carbon-based and metal-based nanomaterials and that research on this is important to greatly improve the performance of the electro-membrane process.

Synthesis of Mesoporous Carbons with Controllable N-Content and Their Supercapacitor Properties

  • Kim, Jeong-Nam;Choi, Min-Kee;Ryoo, Ryong
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.413-416
    • /
    • 2008
  • A synthesis route to ordered mesoporous carbons with controllable nitrogen content has been developed for high-performance EDLC electrodes. Nitrogen-doped ordered mesoporous carbons (denoted as NMC) were prepared by carbonizing a mixture of two different carbon sources within the mesoporous silica designated by KIT-6. Furfuryl alcohol was used as a primary carbon precursor, and melamine as a nitrogen dopant. This synthesis procedure gave cubic Ia3d mesoporous carbons containing nitrogen as much as 13%. The carbon exhibited a narrow pore size distribution centered at 3-4 nm with large pore volume (0.6-1 cm3 g-1) and high specific BET surface area (700-1000 m2 g-1). Electrochemical behaviors of the NMC samples with various N-contents were investigated by a two-electrode measurement system at aqueous solutions. At low current density, the NMC exhibited markedly increasing capacitance due to the increase in the nitrogen content. This result could be attributed to the enhanced surface affinity between carbon electrode and electrolyte ions due to the hydrophilic nitrogen functional groups. At high current density conditions, the NMC samples exhibited decreasing specific capacitance against the increase in the nitrogen content. The loss of the capacitance with the N-content may be explained by high electric resistance which causes a significant IR drop at high current densities. The present results indicate that the optimal nitrogen content is required for achieving high power and high energy density simultaneously.

Self-Assembled Block Copolymers: Bulk to Thin Film

  • Kim, Jin-Kon;Lee, Jeong-In;Lee, Dong-Hyun
    • Macromolecular Research
    • /
    • v.16 no.4
    • /
    • pp.267-292
    • /
    • 2008
  • Block copolymers that two or more polymer chains are covalently linked have drawn much attention due to self-assembly into nanometer-sized morphology such as lamellae, cylinders, spheres, and gyroids. In this article, we first summarize the phase behavior of block copolymers in bulk and thin films and some applications for new functional nanomaterials. Then, future perspectives on block copolymers are described.

Cytotoxicity of Copper Nanoparticles in Cultured Human Bronchial Epithelial Cells (BEAS-2B) (구리로 만든 나노입자의 기관지상피세포에 미치는 독성)

  • Park Eun-Jung;Park Kwangsik
    • Toxicological Research
    • /
    • v.21 no.4
    • /
    • pp.303-307
    • /
    • 2005
  • Nanomaterials, which ranges in size from 1 to 100 nm, have been used to create uqnique devices at the nanoscale level possessing novel physical and chemical functional properties. However, the toxicities of nanomaterials have not been fully tested and the risk of nanomaterials is emerging issues in these days. In this study, the cytotoxicity of copper nanoparticles was tested in cultured human bronchial epithelial cells. As a results, copper nanoparticles showed cytotoxicity similar with cupric ion and the apoptotic mechanisms of DNA fragmentation and caspase-3 activation were involved. Induction of heme oxygenase-1 and thioredoxin reductase by copper nanoparticles indicated that cytotoxicity of copper nanoparticles is likely to be mediated through oxidative stress.