Self-Assembled Block Copolymers: Bulk to Thin Film

  • Kim, Jin-Kon (National Creative Research Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Jeong-In (National Creative Research Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Lee, Dong-Hyun (National Creative Research Center for Block Copolymer Self-Assembly, Department of Chemical Engineering, Pohang University of Science and Technology)
  • Published : 2008.06.30

Abstract

Block copolymers that two or more polymer chains are covalently linked have drawn much attention due to self-assembly into nanometer-sized morphology such as lamellae, cylinders, spheres, and gyroids. In this article, we first summarize the phase behavior of block copolymers in bulk and thin films and some applications for new functional nanomaterials. Then, future perspectives on block copolymers are described.

Keywords

References

  1. M. Szwarc, Nature, 178, 1168 (1956) https://doi.org/10.1038/1781168a0
  2. M. Szwarc, Carbanions, Living Polymers and Electron Transfer Process, Interscience, New York, 1968
  3. G. Holden, E. T. Bishop, and N. R. Legge, J. Polym. Sci.: Part C, 26, 37 (1969)
  4. G. E. Molau, Colloidal and Morphological Behavior of Block and Graft Copolymers, Plenum Press, New York, 1971
  5. A. Noshay and J. E. McGrath, Block Copolymers: Overview and Critical Survey, Academic Press, New York, 1977
  6. R. B. Gallot, Adv. Polym. Sci., 29, 85 (1978) https://doi.org/10.1007/3-540-08886-5_3
  7. G. Riess, G. Hurtrez, and P. Badadur, Block Copolymers in Encyclopedia of Polymer Science and Technology, J. I. Kroschwitz, Ed., 2nd Ed., Wiley Interscience, New York, 1985, Vol. 2
  8. N. R. Legge, G. Holden, and H. Schroeder, Ed., Thermoplastic Elastomers, Hanser, New York, 1987
  9. I. W. Hamley, The Physics of Block Copolymers, Oxford Univ. Press, New York, 1998
  10. I. W. Hamley, Ed., Developments in Block Copolymer Science and Technology, John Wiley & Sons Ltd., Chichester, England, 2004
  11. N. Hadjichristidis, S. Pispas, and G. Floudas, Block Copolymer: Synthetic Strategies, Physical Properties and Application, Wiley-Interscience, New Jersey, 2003
  12. T. P. Lodge, Macromol. Chem. Phys., 204, 265 (2003) https://doi.org/10.1002/macp.200290073
  13. M. Lazzari, G. Liu, and S. Lecommandoux, Eds., Block Copolymers in Nanoscience, Wiley-VCH, Weinheim, 2005
  14. C. D. Han, Rheology and Processing of Polymeric Materials, Oxford Univ. Press, Oxford, 2007, Vol. 1
  15. T. Hashimoto, in Thermoplastic Elastomers, N. R. Legge, G. Holden, and H. Schroeder, Eds., Hanser, New York, 1996
  16. E. Helfand and Z. R. Wasserman, in Developments in Block Copolymers, I. Goodman, Ed., Applied Science, New York, 1982
  17. L. Leibler, Macromolecules, 13, 1602 (1980) https://doi.org/10.1021/ma60078a047
  18. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem., 41, 525 (1990) https://doi.org/10.1146/annurev.pc.41.100190.002521
  19. G. H. Fredrickson and F. S. Bates, Ann. Rev. Mater. Sci., 26, 501 (1996) https://doi.org/10.1146/annurev.ms.26.080196.002441
  20. F. S. Bates, Science, 251, 898 (1991) https://doi.org/10.1126/science.251.4996.898
  21. T. P. Russell, T. E. Karis, Y. Gallot, and A. M. Mayes, Nature, 368, 729 (1994) https://doi.org/10.1038/368729a0
  22. T. Hashimoto, H. Hasegawa, H. Katayama, M. Kamigaito, M. Sawamoto, and M. Imai, Macromolecules, 30, 6819 (1997) https://doi.org/10.1021/ma9613749
  23. M. Pollard, T. P. Russell, A.V. G. Ruzette, A. M. Mayes, and Y. Gallot, Macromolecules, 31, 6493 (1998) https://doi.org/10.1021/ma980316f
  24. A.V. G. Ruzette, P. Banerjee, A. M. Mayes, M. Pollard, T. P. Russell, R. Jerome, T. Slawecki, R. Hjelm, and P. Thiyagarajan, Macromolecules, 31, 8509 (1998) https://doi.org/10.1021/ma981055c
  25. R. Weidisch, M. Stamm, D. W. Schubert, M. Arnold, H. Budde, and S. Horing, Macromolecules, 32, 3405 (1999) https://doi.org/10.1021/ma981748t
  26. H. Hasegawa, N. Sakamoto, H. Takeno, H. Jinnai, T. Hashimoto, D. Schwahn, H. Frielinghaus, S. Janben, M. Imai, and K. Mortensen, J. Phys. Chem. Solids, 60, 1307 (1999) https://doi.org/10.1016/S0022-3697(99)00109-2
  27. D. Y. Ryu, C. Shin, J. Cho, D. H. Lee, J. K. Kim, K. A. Lavery, and T. P. Russell, Macromolecules, 40, 7644 (2007) https://doi.org/10.1021/ma070754z
  28. J. Cho, K. Shin, K. S. Cho, Y.-S. Seo, S. K. Satija, D. Y. Ryu, and J. K. Kim, Macromolecules, 41, 955 (2008) https://doi.org/10.1021/ma071604r
  29. D. Y. Ryu, U. Jeong, J. K. Kim, and T. P. Russell, Nat. Mater., 1, 114 (2002) https://doi.org/10.1038/nmat724
  30. D. Y. Ryu, U. Jeong, D. H. Lee, J. Kim, H. S. Youn, and J. K. Kim, Macromolecules, 36, 2894 (2003) https://doi.org/10.1021/ma026002g
  31. D. Y. Ryu, D. J. Lee, J. K. Kim, K. A. Lavery, T. P. Russell, Y. S. Han, B. S. Seong, C. H. Lee, and P. Thiyagarajan, Phys. Rev. Lett., 90, 235501 (2003) https://doi.org/10.1103/PhysRevLett.90.235501
  32. D. Y. Ryu, D. H. Lee, U. Jeong, S.-H. Yun, S. Park, K. Kwon, B.-H. Sohn, T. Chang, and J. K. Kim, Macromolecules, 37, 3717 (2004) https://doi.org/10.1021/ma049746y
  33. D. Y. Ryu, D. H. Lee, J. Jang, J. K. Kim, K. A. Lavery, and T. P. Russell, Macromolecules, 37, 5851 (2004) https://doi.org/10.1021/ma049329l
  34. C. Li, D. H. Lee, J. K. Kim, D. Y. Ryu, and T. P. Russell, Macromolecules, 39, 5926 (2006) https://doi.org/10.1021/ma0610055
  35. K. A. Lavery, J. D. Sievert, J. J. Watkins, T. P. Russell, D. Y. Ryu, and J. K. Kim. Macromolecules, 39, 6580 (2006) https://doi.org/10.1021/ma060329q
  36. C. Li, G. H. Li, D. H. Lee, and J. K. Kim, Polymer, 48, 4235 (2007) https://doi.org/10.1016/j.polymer.2007.05.003
  37. C. Li, G. H. Li, H. C. Moon, D. H. Lee, J. K. Kim, and J. Cho, Macromol. Res., 15, 656 (2007) https://doi.org/10.1007/BF03218946
  38. K. Almdal, K. A. Koppi, F. S. Bates, and K. Mortensen, Macromolecules, 25, 1743 (1992) https://doi.org/10.1021/ma00032a019
  39. S. Sakurai, H. Kawada, T. Hashimoto, and L. J. Fetters, Macromolecules, 26, 5796 (1993) https://doi.org/10.1021/ma00073a038
  40. K. A. Koppi, M. Tirrell, and F. S. Bates, Phys. Rev. Lett., 70, 1449 (1993) https://doi.org/10.1103/PhysRevLett.70.1449
  41. I. W. Hamley, K. A. Koppi, J. H. Rosadale, F. S. Bates, K. Almdal, and K. Mortensen, Macromolecules, 26, 5959 (1993) https://doi.org/10.1021/ma00074a018
  42. K. Almdal, K. A. Koppi, and F. S. Bates, Macromolecules, 26, 4058 (1993) https://doi.org/10.1021/ma00067a053
  43. A. K. Khandpur, S. Forster, F. B. Bates, I. W. Hamley, A. J. Ryan, W. Bras, K. Almdal, and K. Mortensen, Macromolecules, 28, 8796 (1995) https://doi.org/10.1021/ma00130a012
  44. N. Sakamoto, T. Hashimoto, C. D. Han, D. Kim, and N. Y. Vaidya, Macromolecules, 30, 1621 (1997) https://doi.org/10.1021/ma960610c
  45. C. Y. Ryu, M. E. Vigild, and T. P. Lodge, Phy. Rev. Lett., 81, 5354 (1998) https://doi.org/10.1103/PhysRevLett.81.5354
  46. C. Y. Ryu and T. P. Lodge, Macromolecules, 32, 7190 (1999) https://doi.org/10.1021/ma990914+
  47. K. Kimishima, T. Koga, and T. Hashimoto, Macromolecules, 33, 968 (2000) https://doi.org/10.1021/ma991470k
  48. J. K. Kim, H. H. Lee, M. Ree, K. B. Lee, and Y. Park, Macromol. Chem. Phys., 199, 641 (1998) https://doi.org/10.1002/(SICI)1521-3935(19980401)199:4<641::AID-MACP641>3.0.CO;2-D
  49. J. K. Kim, H. H. Lee, Q. J. Gu, T. Chang, and Y. H. Jeong, Macromolecules, 31, 4045 (1998) https://doi.org/10.1021/ma971879e
  50. H. H. Lee, W. Y. Jeong, J. K. Kim, K. J. Ihn, J. A. Kornfield, Z.-G. Wang, and S. Qi, Macromolecules, 34, 785 (2002)
  51. D. A. Hajduk, S. M. Gruner, P. Rangarajan, R. A. Register, L. J. Fetters, C. Honeker, R. J. Albalak, and E. L. Thomas, Macromolecules, 27, 490 (1994) https://doi.org/10.1021/ma00080a024
  52. J. H. Ahn and W. C. Zin, Macromolecules, 35, 10238 (2002) https://doi.org/10.1021/ma0213652
  53. Y.-L Loo, R. A. Register, D. H. Adamson, and A. J. Ryan, Macromolecules, 38, 4947 (2005) https://doi.org/10.1021/ma050237l
  54. C. Lai, Y.-L. Loo, R. A. Register, and D. H. Adamson, Macromolecules, 38, 7098 (2005) https://doi.org/10.1021/ma050953n
  55. K. J. Hanley, T. P. Lodge, and C.-I. Huang, Macromolecules, 33, 5918 (2000) https://doi.org/10.1021/ma000318b
  56. T. P. Lodge, K. J. Hanley, and B. Pudil, Macromolecules, 35, 4707 (2002) https://doi.org/10.1021/ma0200975
  57. J. Bang, T. P. Lodge, S. Wang, K. L. Briker, and W. R. Burghardt, Phys. Rev. Lett., 89, 215505 (2002) https://doi.org/10.1103/PhysRevLett.89.215505
  58. T. P. Lodge, J. Bang, M. J. Park, and K. Char, Phys. Rev. Lett., 92, 145501 (2004) https://doi.org/10.1103/PhysRevLett.92.145501
  59. M. J. Park, J. Bang, T. Harada, and K. Char, and T. P. Lodge, Macromolecules, 37, 9064 (2004) https://doi.org/10.1021/ma049285g
  60. Y. Y. Huang, H.-L. Chen, and T. Hashimoto, Macromolecules, 36, 764 (2003) https://doi.org/10.1021/ma0204305
  61. Y. Y. Huang, J.-Y. Hsu, H.-L. Chen, and T. Hashimoto, Macromolecules, 40, 3700 (2007) https://doi.org/10.1021/ma070066f
  62. M. W. Matsen and F. S. Bates, Macromolecules, 29, 1091 (1996) https://doi.org/10.1021/ma951138i
  63. E. W. Cochran, C. J. Garcia-Cervera, and G. H. Fredrickson, Macromolecules, 39, 2449 (2006) https://doi.org/10.1021/ma0527707
  64. J.-S. Lee, A. Hirao and S. Nakahama, Macromolecules, 21, 274 (1988) https://doi.org/10.1021/ma00179a057
  65. J.-S. Lee, A. Hirao and S. Nakahama, Macromolecules, 22, 2602 (1989) https://doi.org/10.1021/ma00196a010
  66. G. Krausch, Mater. Sci. Eng., R14, 1 (1995)
  67. M. J. Fasolka and A. M. Mayes, Annu. Rev. Mater. Res., 31, 323 (2001) https://doi.org/10.1146/annurev.matsci.31.1.323
  68. I. W. Hamley, Nanotechnology, 14, R39 (2003) https://doi.org/10.1088/0957-4484/14/10/201
  69. C. Park, J. Yoon, and E. L. Thomas, Polymer, 44, 6725 (2003) https://doi.org/10.1016/j.polymer.2003.08.011
  70. M. Lazzari and M. A. Lopez-Quintela, Adv. Mater., 15, 1583 (2003) https://doi.org/10.1002/adma.200300382
  71. R. A. Segalman, Mater. Sci. Eng., R48, 191 (2005)
  72. C. J. Hawker and T. P. Russell, MRS Bull., 30, 952 (2005) https://doi.org/10.1557/mrs2005.249
  73. I. W. Hamley, Ang. Chemie. Int. Ed., 42, 1692 (2003) https://doi.org/10.1002/anie.200200546
  74. S. Forste and T. Plantenberg, Angew. Chem. Int. Ed., 41, 688 (2002) https://doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
  75. G. J. Doler-Illeia, E. L. Crepaldi, D. Grosso, and C. Sanchez, Curr. Opin. Coll. Inter. Sci., 8, 109 (2003) https://doi.org/10.1016/S1359-0294(03)00002-5
  76. S. B. Darling, Prog. Polym. Sci., 32, 1152 (2007) https://doi.org/10.1016/j.progpolymsci.2007.05.004
  77. G. Riess, Progr. Polym. Sci., 28, 1107 (2003) https://doi.org/10.1016/S0079-6700(03)00015-7
  78. L. F. Zhang and A. Eisenberg, Science, 268, 1728 (1995) https://doi.org/10.1126/science.268.5218.1728
  79. S. Jain and F. S. Bates, Science, 300, 460 (2003) https://doi.org/10.1126/science.1082193
  80. M. Yokoyama, M. Miyauchi, N. Yamada, T. Okano, Y. Sakurai, K. Kataoka, and S. Inoue, J. Control. Release, 11, 269 (1990) https://doi.org/10.1016/0168-3659(90)90139-K
  81. Y. Bae, S. Fukushima, A. Harada, and K. Kataoka, Angew. Chem. Int. Ed., 42, 4640 (2003) https://doi.org/10.1002/anie.200250653
  82. L. Qi, H. Cslfen, and M. Antonietti, Nano Lett., 1, 61 (2001) https://doi.org/10.1021/nl0055052
  83. M. Msller and J. P. Spatz, Curr. Opin. Colloid Interface Sci., 2, 177 (1997) https://doi.org/10.1016/S1359-0294(97)80024-6
  84. S. Fsrster and M. Antonietti, Adv. Mater., 10, 195 (1998) https://doi.org/10.1002/(SICI)1521-4095(199802)10:3<195::AID-ADMA195>3.0.CO;2-V
  85. S. Fsrster and T. Plantenberg, Angew.Chem Int. Ed., 41, 688 (2002) https://doi.org/10.1002/1521-3773(20020301)41:5<688::AID-ANIE688>3.0.CO;2-3
  86. S. I. Yoo, J. H. Kwon, and B. H. Sohn, J. Mater. Chem., 17, 2969 (2007) https://doi.org/10.1039/b703725b
  87. A. Philip and J. K. Kim, Chem. Comm., 1193 (2008)
  88. E. Helfand and Z. R. Wasserman, Macromolecules, 9, 879 (1976) https://doi.org/10.1021/ma60054a001
  89. E. Helfand and Z. R. Wasserman, Macromolecules, 11, 960 (1978) https://doi.org/10.1021/ma60065a023
  90. E. Helfand and Z. R. Wasserman, Macromolecules, 13, 994 (1980) https://doi.org/10.1021/ma60076a045
  91. E. Helfand and Z. R. Wasserman, Polym. Eng. Sci., 17, 535 (1977) https://doi.org/10.1002/pen.760170809
  92. S. Krause, J. Polym. Sci.: Part A-2, 7, 249 (1969) https://doi.org/10.1002/pol.1969.160070121
  93. S. Krause, Macromolecules, 3, 84 (1970) https://doi.org/10.1021/ma60013a017
  94. T. Inoue, T. Soen, T. Hashimoto, and H. Kawai, J. Polym. Sci.: Part A-2, 7, 1283 (1969) https://doi.org/10.1002/pol.1969.160070801
  95. T. Inoue, T. Soen, T. Hashimoto, and H. Kawai, Macromolecules, 3, 87 (1970) https://doi.org/10.1021/ma60013a018
  96. J. D. Vavasour and M. D. Whitmore, Macromolecules, 25, 5477 (1992) https://doi.org/10.1021/ma00046a055
  97. J. D. Vavasour and M. D. Whitmore, Macromolecules, 26, 7070 (1993) https://doi.org/10.1021/ma00077a054
  98. M. W. Matsen and M. Schick, Macromolecules, 27, 4014, 6761, 7157 (1994) https://doi.org/10.1021/ma00092a049
  99. M. W. Matsen and M. Schick, Phys. Rev. Lett., 72, 2660 (1994) https://doi.org/10.1103/PhysRevLett.72.2660
  100. A. K. Khandpur, S. Forster, and F. S. Bates, Macromolecules, 28, 8796 (1995) https://doi.org/10.1021/ma00130a012
  101. F. S. Bates and M. A. Hartney, Macromolecules, 18, 2478 (1985) https://doi.org/10.1021/ma00154a023
  102. F. S. Bates and M. A. Hartney, Macromolecules, 19, 2892 (1986)
  103. M. Shibayama, T. Hashimoto, H. Kawai, H. Watanabe, and T. Kodaka, Macromolecules, 16, 16 (1983) https://doi.org/10.1021/ma00235a005
  104. T. Hashimoto, M. Shibayama, and H. Kawai, Macromolecules, 16, 361 (1983) https://doi.org/10.1021/ma00237a005
  105. T. Hashimoto, M. Shibayama, and H. Kawai, Macromolecules, 16, 1093 (1983) https://doi.org/10.1021/ma00241a010
  106. M. Shibayama, T. Hashimoto, and H. Kawai, Macromolecules, 16, 1443 (1983) https://doi.org/10.1021/ma00243a007
  107. T. Hashimoto, Y. Tsukahara, and H. Kawai, Polymer J., 15, 699 (1983) https://doi.org/10.1295/polymj.15.699
  108. K. Mori, H. Hasegawa, and T. Hashimoto, Polymer J., 17, 799 (1985) https://doi.org/10.1295/polymj.17.799
  109. R. J. Roe, M. Fishkis, and J. C. Chang, Macromolecules, 14, 1091 (1981) https://doi.org/10.1021/ma50005a040
  110. W. C. Zin and R. J. Roe, Macromolecules, 17, 183 (1984) https://doi.org/10.1021/ma00132a011
  111. E. V. Gouinlock and R. S. Porter, Polym. Eng. Sci., 17, 534 (1977)
  112. C. I. Chung and J. C. Gale, J. Polym. Sci. Polym. Phys. Ed., 14, 1149 (1976) https://doi.org/10.1002/pol.1976.180140616
  113. C. I. Chung and M. I. Lin, J. Polym. Sci. Polym. Phys. Ed., 16, 545 (1978) https://doi.org/10.1002/pol.1978.180160316
  114. G. Kraus and T. Hashimoto, J. Appl. Polym. Sci., 27, 1745 (1982) https://doi.org/10.1002/app.1982.070270531
  115. F. S. Bates, Macromolecules, 17, 2607 (1984) https://doi.org/10.1021/ma00142a025
  116. F. S. Bates, J. H. Rosadale, H. E. Bair, and T. P. Russell, Macromolecules, 22, 2557 (1989) https://doi.org/10.1021/ma00196a002
  117. F. S. Bates, J. H. Rosadale, G. H. Fredrickson, and C. J. Glinka, Phys. Rev. Lett., 61, 2229 (1988) https://doi.org/10.1103/PhysRevLett.61.2229
  118. K. Almdal, J. H. Rosadale, F. S, Bates, G. D. Wignal, and G. H. Fredrickson, Phys. Rev. Lett., 65, 1112 (1990) https://doi.org/10.1103/PhysRevLett.65.1112
  119. K. I. Winey, E. L. Thomas, and L. J. Fetters, Macromolecules, 25, 422 (1992) https://doi.org/10.1021/ma00027a065
  120. J. L. Adams, W. W. Graessley, and R. A. Register, Macromolecules, 27, 6026 (1994) https://doi.org/10.1021/ma00099a014
  121. K. I. Winey, D. A. Gobran, Z. Xu, L. J. Fetters, and E. L. Thomas, Macromolecules, 27, 2392 (1994) https://doi.org/10.1021/ma00087a005
  122. G. Flodas, N. Hadjichristidis, H. Iatrou, T. Pakula, and E. W. Fisher, Macromolecules, 27, 7735 (1994) https://doi.org/10.1021/ma00104a032
  123. C. D. Han and J. Kim, J. Polym. Sci.; Part B: Polym. Phys., 25, 1741 (1987) https://doi.org/10.1002/polb.1987.090250815
  124. C. D. Han, J. Kim, and J. K. Kim, Macromolecules, 22, 383 (1989) https://doi.org/10.1021/ma00191a071
  125. C. D. Han, D. M. Baek, and J. K. Kim, Macromolecules, 23, 561 (1990) https://doi.org/10.1021/ma00204a032
  126. C. D. Han, D. M. Baek, S. Sakurai, and T. Hashimoto, Polymer J., 21, 841 (1989) https://doi.org/10.1295/polymj.21.841
  127. T. Hashimoto, T. Ogawa, and C. D. Han, J. Phys. Soc. Jap., 63, 2206 (1994) https://doi.org/10.1143/JPSJ.63.2206
  128. C. D. Han, D. M. Baek, J. K. Kim, T. Ogawa, N. Sakamoto, and T. Hashimoto, Macromolecules, 28, 5043 (1995) https://doi.org/10.1021/ma00118a038
  129. N. P. Balsara, D. Perahia, C. R. Safinya, M. Tirrell, and T. P. Lodge, Macromolecules, 25, 3896 (1992) https://doi.org/10.1021/ma00041a011
  130. N. P. Balsara, H. J. Dai, P. K. Kesani, B. A. Garatz, and B. Hammouda, Macromolecules, 27, 7406 (1994) https://doi.org/10.1021/ma00103a023
  131. R. M. Kannan and J. A. Kornfield, Macromolecules, 27, 1177 (1994) https://doi.org/10.1021/ma00083a016
  132. D. J. Meier, J. Polym. Sci.: Part C, 26, 81 (1969)
  133. D. J. Meier, Polym. Preprints, 11(2), 400 (1970)
  134. D. J. Meier, in Thermoplastic Elastomers, N. R. Legge, G. Holden, and H. Schroeder, Eds., Hanser, New York, 1987, Chapter 11
  135. T. S. Bailey, C. M. Hardy, T. H. Eppps, and F. S. Bates, Macromolecules, 35, 7007 (2002) https://doi.org/10.1021/ma011716x
  136. M. Takenaka, T. Wakada, S. Akasaka, S. Nishitsuji, K. Saijo, H. Shimizu, M. I. Kim, and H. Hasegawa, Macromolecules, 40, 4399 (2007) https://doi.org/10.1021/ma070739u
  137. N. Sakamoto, T. Hashimoto, C. D. Han, D. Kim, and N. Y. Vaidya, Macromolecules, 30, 1621(1997) https://doi.org/10.1021/ma960610c
  138. C. D. Han, N. Y. Vaidya, D. Kim, G. Shin, D. Yamaguchi, and T. Hashimoto, Macromolecules, 33, 3767(2000) https://doi.org/10.1021/ma991862r
  139. S. Choi, K. M. Lee, C. D. Han, N. Sota, and T. Hashimoto, Macromolecules, 36, 793 (2003) https://doi.org/10.1021/ma020684q
  140. J. K. Kim, H. H. Lee, S. Sakurai, S. Aida, J. Masamoto, S. Nomura, Y. Kitagawa, and Y. Suda, Macromolecules, 32, 6707 (1999) https://doi.org/10.1021/ma9902854
  141. R. A. Segalman, A. Hexemer, R. C. Hayward, and E. J. Kramer, Macromolecules, 36, 3272 (2003) https://doi.org/10.1021/ma021367m
  142. X. Wang, E. E. Dormidontova, and T. P. Lodge, Macromolecules, 35, 9687 (2002) https://doi.org/10.1021/ma021009j
  143. G. H. Fredrickson and E. Helfand, J. Chem. Phys., 87, 697 (1987) https://doi.org/10.1063/1.453566
  144. G. H. Fredrickson and E. Helfand, J. Chem. Phys., 89, 5890 (1988) https://doi.org/10.1063/1.455540
  145. J. Barret and G. H. Fredrickson, J. Chem. Phys., 95, 1281 (1991) https://doi.org/10.1063/1.461109
  146. C. D. Han, D. M. Baek, J. Kim, K. Kimishima, and T. Hashimoto, Macromolecules, 25, 3052 (1992) https://doi.org/10.1021/ma00038a008
  147. S. A. Brazovskii, Sov. Phys. (JETP), 41, 85 (1975)
  148. W. Zha, C. D. Han, D. H. Lee, S. H. Han, J. K. Kim, J. H. Kang, and C. Park, Macromolecules, 40, 2109 (2007) https://doi.org/10.1021/ma062516u
  149. B. Sthn, J. Polym. Sci.; Part B: Polym. Phys. Ed., 30, 1013 (1992) https://doi.org/10.1002/polb.1992.090300909
  150. D. A. Hajduk, S. M. Grunmer, S. Erramilli, R. A. Register, and L. J. Fetters, Macromolecules, 29, 1473 (1996) https://doi.org/10.1021/ma950643c
  151. G. Floudas, N. Hadjichristidis, M. Stamm, A. E. Likthman, and A. N. Semenov, J. Chem. Phys., 106, 3318 (1997) https://doi.org/10.1063/1.473080
  152. H. Soenen, A. Liskova, K. Reynders, H. Berghmans, H. H. Winter, and N. Overbergh, Polymer, 38, 5661 (1997) https://doi.org/10.1016/S0032-3861(97)00107-9
  153. V. P. Voronov, V. M. Buleiko, V. E. Podneks, I. W. Hamley, J. P. A. Fairclough, A. J. Ryan, S. M. Mai, B. X. Kiao, and C. Booth, Macromolecules, 30, 6674 (1997) https://doi.org/10.1021/ma970727g
  154. H. J. Kim, S. B. Kim, J. K. Kim, Y. M. Jung, D. Y. Ryu, K. A. Lavery, and T. P. Russell, Macromolecules, 39, 408 (2006) https://doi.org/10.1021/ma052259d
  155. G. H. Fredrickson, J. Chem. Phys., 85, 5306 (1986) https://doi.org/10.1063/1.451673
  156. G. H. Fredrickson and R. G. Larson, J. Chem. Phys., 86, 1553 (1987) https://doi.org/10.1063/1.452194
  157. R. G. Larson and G. H. Fredrickson, Macromolecules, 20, 1897 (1987) https://doi.org/10.1021/ma00174a034
  158. C. D. Han and M. S. Jhon, J. Appl. Polym. Sci., 32, 3809 (1986) https://doi.org/10.1002/app.1986.070320302
  159. C. D. Han and J. K. Kim, Macromolecules, 22, 4292 (1989) https://doi.org/10.1021/ma00201a026
  160. D. Patterson and A. Robard, Macromolecules, 11, 690 (1978) https://doi.org/10.1021/ma60064a015
  161. I. C. Sanchez and C. G. Panayiotou, in Models for Thermodynamic and Phase Equilibria Calculation, S. I. Sandler, Ed., Marcel Dekker Inc, New York, 1994, Ch. 3
  162. C. S. Hudson, J. Phys. Chem., 47, 113 (1904)
  163. G. N. Malcolm and J. S. Rowlinson, Trans. Faraday Soc., 53, 921 (1957) https://doi.org/10.1039/tf9575300921
  164. M. M. Abbott and J. M. Prausnitz, in Models for Thermodynamic and Phase Equilibria Calculations, S. I. Sandler, Ed., Marcel Dekker, New York, 1994, pp. 1-86
  165. T. Hashimoto and N. Sakamoto, Macromolecules, 28, 4779 (1995) https://doi.org/10.1021/ma00117a070
  166. N. Sakamoto and T. Hashimoto, Macromolecules, 31, 3815 (1998) https://doi.org/10.1021/ma980037s
  167. J. Cho, Macromolecules, 37, 10101 (2004) https://doi.org/10.1021/ma0483569
  168. J. Cho and Y. K. Kwon, J. Polym. Sci. Polym. Phys., 41, 1889 (2003) https://doi.org/10.1002/polb.10560
  169. H. J. Kim, S. B. Kim, J. K. Kim, and Y. M. Jung, J. Phys. Chem.B, 110, 23123 (2006) https://doi.org/10.1021/jp0638282
  170. H. Kasten and B. StYhn, Macromolecules, 28, 4777 (1995) https://doi.org/10.1021/ma00117a069
  171. D. A. Hajduk, S. M. Gruner, S. Erramilli, R. A. Register, and L. J. Fetters, Macromolecules, 29, 1473 (1996) https://doi.org/10.1021/ma950643c
  172. D. Schwahn, H. Frielinghaus, K. Mortensen, and K. Almdal, Phys. Rev. Lett.,77, 3153 (1996) https://doi.org/10.1103/PhysRevLett.77.3153
  173. V. Bartels, M. Stamm, and K. Mortensen, Polym. Bull., 36, 103 (1996) https://doi.org/10.1007/BF00296014
  174. H. Frielinghaus, D. Schwahn, K. Mortensen, K. Almdal, and T. Springer, Macromolecules, 29, 3263 (1996) https://doi.org/10.1021/ma950998w
  175. A.-V. G. Ruzette, A. M. Mayes, M. Pollard, T. P. Russell, and B. Hammouda, Macromolecules, 36, 3351 (2003) https://doi.org/10.1021/ma021394c
  176. B. Steinhoff, M. RYllmann, M. Wenzel, M. Junker, I. Alig, R. Oser, B. Stuhn, G. Meier, O. Diat, P. Bosecke, and H. B. Stanley, Macromolecules, 31, 36 (1998) https://doi.org/10.1021/ma970659y
  177. D. Schwahn, H. Frielinghaus, K. Mortensen, and K. Almdal, Macromolecules, 34, 1694 (2001) https://doi.org/10.1021/ma0002545
  178. H. Frielinghaus, D. Schwahn, J. Dudowicz, K. F. Freed, and K. W. Foreman, J. Chem. Phys., 114, 5016 (2001) https://doi.org/10.1063/1.1350443
  179. J. Dodowicz, M. S. Freed, and K. F. Freed, Macromolecules, 24, 5096 (1991) https://doi.org/10.1021/ma00018a015
  180. K. F. Freed and J. Dudowicz, J. Chem. Phys., 97, 2105 (1992) https://doi.org/10.1063/1.463149
  181. J. Dudowicz and K. F. Freed, Macromolecules, 26, 213 (1993) https://doi.org/10.1021/ma00053a033
  182. J. Dudowicz, K. F. Freed, and J. F. Fouglas, Phys. Rev. Lett., 88, 095503 (2002) https://doi.org/10.1103/PhysRevLett.88.095503
  183. K. F. Freed and J. Dudowicz, Adv.Polym. Sci., 183, 63 (2005) https://doi.org/10.1007/b135883
  184. T. Hino and J. M. Prausnitz, Macromolecules, 31, 2636 (1998) https://doi.org/10.1021/ma970796v
  185. J. Cho, Macromolecules, 33, 2228 (2000) https://doi.org/10.1021/ma990610n
  186. J. Cho, Macromolecules, 34, 1001 (2001) https://doi.org/10.1021/ma000640m
  187. A. V. G. Ruzette and A. M. Mayes, Macromolecules, 34, 1894 (2001) https://doi.org/10.1021/ma000712+
  188. A. V. G. Ruzette, P. Banerjee, A. M. Mayes, M. Pollard, and T. P. Russell, J. Chem. Phys., 114, 8205 (2001) https://doi.org/10.1063/1.1361072
  189. J. A. Gonzalez-Leon, M. H. Acar, S. W. Ryu, A. V. G. Ruzette, and A. M. Mayes, Nature, 426, 424 (2003) https://doi.org/10.1038/nature02140
  190. J. A. Gonzalez-Leon, S. W. Ryu, S. A. Hewlett, S. H. Ibrabim, and A. M. Mayes, Macromolecules, 38, 8036 (2005) https://doi.org/10.1021/ma0508045
  191. D. H. Lee, H. J. Kim, and J. K. Kim, Macromolecular Symposia, 240, 123 (2006)
  192. Y. Matsushita, H. Choshi, T. Fujimoto, and M. Nagasawa, Macromolecules, 13, 1053 (1980) https://doi.org/10.1021/ma60077a006
  193. Y. Mogi, H. Kotsuji, Y. Kaneko, K. Mori, Y. Matsushita, and I. Noda, Macromolecules, 25, 5408 (1992) https://doi.org/10.1021/ma00046a043
  194. Y. Mogi, H. Kotsuji, Y. Kaneko, K. Mori, Y. Matsushita, I. Noda, and C. C. Han, Macromolecules, 26, 5169 (1993) https://doi.org/10.1021/ma00071a029
  195. Y. Mogi, M. Nomura, H. Kotsuji, K. Ohnishi, Y. Matsushita, and I. Noda, Macromolecules, 27, 6755 (1994) https://doi.org/10.1021/ma00101a013
  196. C. Auschra and R. Stadler, Polym. Bull., 30, 257, 305 (1993) https://doi.org/10.1007/BF00343065
  197. C. Auschra and R. Stadler, Macromolecules, 26, 2171, 6364 (1993) https://doi.org/10.1021/ma00076a011
  198. R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voigt-Martin, and L. Leibler, Macromolecules, 28, 3080 (1995) https://doi.org/10.1021/ma00113a010
  199. U. Krappe, R. Stadler, and I. Voigt-Matin, Macromolecules, 28, 4558 (1995) https://doi.org/10.1021/ma00117a027
  200. U. Breiner, U. Krappe, E. L. Thomas, and R. Stadler, Macromolecules, 31, 135 (1998) https://doi.org/10.1021/ma961550d
  201. W. Zhang and Z. G. Wang, Macromolecules, 28, 7215 (1995) https://doi.org/10.1021/ma00125a026
  202. F. S. Bates and G. H. Fredrickson, Physics Today, 52, 32 (1999)
  203. T. S. Bailey, H. D. Pham, and F. S. Bates, Macromolecules, 34, 6994 (2001) https://doi.org/10.1021/ma0103371
  204. T. H. Epps , E. W. Cochran, T. S. Bailey, R. S. Waletzko, C. M. Hardy, and F. S. Bates, Macromolecules, 37, 8325 (2004) https://doi.org/10.1021/ma048762s
  205. T. H. Epps, J. Chatterjee, and F. S. Bates, Macromolecules, 38, 8775 (2005) https://doi.org/10.1021/ma050736m
  206. F. S. Bates, MRS Bulletin, 30, 525 (2005) https://doi.org/10.1557/mrs2005.145
  207. G. H. Fredrickson, V. Ganesan, and F. Drolet, Macromolecules, 35, 16 (2002) https://doi.org/10.1021/ma011515t
  208. T. S. Bailey, H. D. Pham, and F. S. Bates, Chem. Mater., 14, 1706 (2002) https://doi.org/10.1021/cm010971t
  209. T. H. Epps, T. S. Bailey, R. Waletzko, and F. S. Bates, Macromolecules, 36, 2873 (2003) https://doi.org/10.1021/ma021231o
  210. T. Goldacker, V. Abetz, R. Stadler, I. Erukhimovich, and L. Leibler, Nature, 398, 137 (1999) https://doi.org/10.1038/18191
  211. A. Takano, K. Soga, J. Suzuki, and Y. Matsushita, Macromolecules, 36, 9288 (2003) https://doi.org/10.1021/ma035344z
  212. T. A. Shefelbine, M. E. Vigild, M. W. Matsen, D. A. Hajduk, M. A. Hillmyer, E. L. Cussler, and F. S. Bates, J. Am. Chem. Soc., 121, 8457 (1999) https://doi.org/10.1021/ja991442h
  213. F. S. Bates, G. H. Fredrickon, G. H. Hucul, and S. F. Han, AICHE J., 47, 762 (2001) https://doi.org/10.1002/aic.690470402
  214. C. Y. Ryu, J. Ruokolainen, G. H. Fredrickon, E. J. Kramer, and S. F. Hahn, Macromolecules, 35, 2157 (2002) https://doi.org/10.1021/ma011576r
  215. T. J. Hermel, S. F. Hahn, K. A. Chaffin, W. W. Gerberich, and F. S. Bates, Macromolecules, 36, 2190 (2003) https://doi.org/10.1021/ma021754w
  216. T. Asari, S. Arai, A. Takano, and Y. Matsushita, Macromolecules, 39, 2232 (2006) https://doi.org/10.1021/ma0524880
  217. K. Hayashida, W. Kawashima, A. Takano,Y. Shinohara, Y. Amemiya, Y. Nozue, and Y. Matsushita, Macromolecules, 39, 4869 (2006) https://doi.org/10.1021/ma060647p
  218. K. Hayashida, A. Takano, S. Arai, Y. Shinohara, Y. Amemiya, and Y. Matsushita, Macromolecules, 39, 9402 (2006) https://doi.org/10.1021/ma0618474
  219. Y. Matsushita, Macromolecules, 40, 771 (2007) https://doi.org/10.1021/ma062266h
  220. K. Hayashida, N. Saito, S. Arai, A. Takano, N. Tanaka, and Y. Matsushita, Macromolecules, 40, 3695 (2007) https://doi.org/10.1021/ma062972i
  221. K. Hayashida, T. Dotera, A. Takano, and Y. Matsushita1, Phys. Rev. Lett., 98, 195502 (2007) https://doi.org/10.1103/PhysRevLett.98.195502
  222. R. Yin and T. E. Hogen-Esch, Macromolecules, 26, 6952 (2003)
  223. R. L. Lescanec, D. A. Hajduk, G. Y. Kim, Y. Gan, R. Yin, S. M. Gruner, T. E. Hogen-Esch, and E. L. Thomas, Macromolecules, 28, 3485 (1995) https://doi.org/10.1021/ma00113a060
  224. J. F. Marko, Macromolecules, 26, 1442 (1993) https://doi.org/10.1021/ma00058a038
  225. A. N. Morozov and J. G. E. M. Fraaije, Macromolecules, 34, 1526 (2001) https://doi.org/10.1021/ma001564q
  226. W. H. Jo and J. Hur, J. Chem. Phys., 111, 1712 (1999) https://doi.org/10.1063/1.479431
  227. A. Mayes and Olvera de la Cruzz, J. Chem. Phys., 91, 7228 (1989) https://doi.org/10.1063/1.457290
  228. D. E. Discher and A. Eisenberg, Science, 297, 967 (2002) https://doi.org/10.1126/science.1074972
  229. J. S. Yoo, M. S. Kim, D. S. Lee, B. S. Kim, and J. H. Kim, Macromol. Res., 14, 117 (2006) https://doi.org/10.1007/BF03219078
  230. Y. P. Jung, Y. K. Son, and J. H. Kim, Macromol. Res., 15, 82 (2007) https://doi.org/10.1007/BF03218811
  231. S. J. Im, Y. M. Choi, E. Subramanyam, K. M. Huh, and K. Park, Macromol. Res., 15, 363 (2007) https://doi.org/10.1007/BF03218800
  232. S. J. Hwang, M. S. Kim, J. K. Han, D. S. Lee, B. S. Kim, E. K. Choi, H. J. Park, and J. S. Kim, Macromol. Res., 15, 437 (2007) https://doi.org/10.1007/BF03218811
  233. D. H. Kim, Y. S. Ko, and Y. K. Kwon, Macromol. Res., 16, 62 (2008) https://doi.org/10.1007/BF03218962
  234. K. Dayananda, M. S. Kim, and B. S. Kim, Macromol. Res., 15, 385 (2007) https://doi.org/10.1007/BF03218803
  235. Y. Y. Won, A. K. Brannan, H. T. Davis, and F. S. Bates, J. Phys. Chem. B, 106, 3354 (2002) https://doi.org/10.1021/jp013639d
  236. D. J. Pochan, Z. Y. Chen, H. G. Cui, K. Hales, K. Qi, and K. L. Wooley, Science, 306, 94 (2004) https://doi.org/10.1126/science.1102866
  237. H. Cui, Z. Chen, S. Zhong, K. L. Wooley, and D. J. Pochan, Science, 317, 647 (2007) https://doi.org/10.1126/science.1141768
  238. Z. B. Li, E. Kesselman, Y. Talmon, M. A. Hillmyer, and T. P. Lodge, Science, 306, 98 (2004) https://doi.org/10.1126/science.1103350
  239. Z. B. Li, M. A. Hillmyer, and T. P. Lodge, Macromolecules, 39, 765 (2006) https://doi.org/10.1021/ma052199b
  240. Z. B. Li, M. A. Hillmyer, and T. P. Lodge, Macromolecules, 37, 8933 (2004)
  241. S. Y. Kim, S. H. Cho, Y. M. Lee, and L. Y. Chu, Macromol. Res., 15, 646 (2007)
  242. K. M. Kim, S. Y. Choi, and H. J. Jeon, Macromol. Res., 16, 169 (2008) https://doi.org/10.1007/BF03218847
  243. Y. K. Joung, J. S. Lee, and K. D. Park, Macromol. Res., 16, 66 (2008) https://doi.org/10.1007/BF03218963
  244. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997) https://doi.org/10.1038/42218
  245. Y. Mohajer, G. L. Wilkes, I. C. Wang, and J. E. McGrath, Polymer, 23, 1523 (1982) https://doi.org/10.1016/0032-3861(82)90256-7
  246. R. Seguela and J. Prud'homme, Polymer, 30, 1446 (1989) https://doi.org/10.1016/0032-3861(89)90214-0
  247. R. E. Cohen, P. L. Cheng, K. Douzinas, P. Kofinas, and C. V. Berney, Macromolecules, 23, 324 (1990) https://doi.org/10.1021/ma00203a055
  248. K. C. Douzinas and R. E. Cohen, Macromolecules, 25, 5030 (1992) https://doi.org/10.1021/ma00045a033
  249. R. E. Cohen , A. Bellare, and M. A. Drzewinski, Macromolecules, 27, 2321 (1994) https://doi.org/10.1021/ma00086a053
  250. P. Rangarajan, R. A. Register, and L. J. Fetters, Macromolecules, 26, 4640 (1993) https://doi.org/10.1021/ma00069a034
  251. P. Rangarajan, R. A. Register, L. J. Fetters, W. Bras, S. Naylor, and A. J. Ryan, Macromolecules, 28, 4932 (1995) https://doi.org/10.1021/ma00118a022
  252. P. Rangarajan, R. A. Register, D. H. Adamson, L. J. Fetters, W. Bras, S. Naylor, and A. J. Ryan, Macromolecules, 28, 1422 (1995) https://doi.org/10.1021/ma00109a013
  253. A. J. Ryan, I. W. Hamley, W. Bras, and F. Bates, Macromolecules, 28, 3860 (1995) https://doi.org/10.1021/ma00115a016
  254. I. W. Hamley, J. P. A. Fairclough, F. S. Bates, and A. J. Ryan, Polymer, 39, 1429 (1998) https://doi.org/10.1016/S0032-3861(97)00409-6
  255. D. J. Quiram, R. A. Register, and G. R. Marchand, Macromolecules, 30, 4551 (1997) https://doi.org/10.1021/ma961524f
  256. I. W. Hamley, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, P. M. Lipic, F. S. Bates, and E. Towns-Andrews, Macromolecules, 29, 8835 (1996) https://doi.org/10.1021/ma960343a
  257. I. W. Hamley, J. P. A. Fairclough, A. J. Ryan, F. S. Bates, and E. Towns-Andrews, Polymer, 37, 4425 (1996) https://doi.org/10.1016/0032-3861(96)00261-3
  258. P. C. Ashman and C. Booth, Polymer, 16, 889 (1975) https://doi.org/10.1016/0032-3861(75)90209-8
  259. C. Booth and D. V. Dodgson, J. Polym. Sci: Polym. Phys. Ed., 11, 265 (1973)
  260. S. M. Mai, J. P. A. Fairclough, K. Viras, P. A. Gorry, I. W. Hamley, A. J. Ryan, and C. Booth, Macromolecules, 30, 8392 (1997) https://doi.org/10.1021/ma971158f
  261. A. J. Ryan, J. P. A. Fairclough, I. W. Hamley, S. M. Mai, and C. Booth, Macromolecules, 30, 1723 (1997) https://doi.org/10.1021/ma960943+
  262. S. Nojima, K. Kato, S. Yamamoto, and T. Ashida, Macromolecules, 25, 2237 (1992) https://doi.org/10.1021/ma00034a027
  263. S. Nojima, M. Ono, and T. Ashida, Polymer J., 24, 1271 (1992) https://doi.org/10.1295/polymj.24.1271
  264. S. Nojima, S. Yamamoto, and T. Ashida, Polymer J., 27, 673 (1995) https://doi.org/10.1295/polymj.27.673
  265. J. K. Kim, D. J. Park, M. S. Lee, and K. J. Ihn, Polymer, 42, 7429 (2001) https://doi.org/10.1016/S0032-3861(01)00217-8
  266. M. D. Kempe, N. R. Scruggs, R. Verduzco, J. Lal, and J. A. Kornfield, Nat. Mater., 3, 177 (2004) https://doi.org/10.1038/nmat1074
  267. K. M. Lee and C. D. Han, Macromolecules, 35, 3145 (2002) https://doi.org/10.1021/ma012036x
  268. Y. Tian, K. Watanabe, X. Kong, J. Abe, and T. Iyoda, Macromolecules, 35, 3739 (2002) https://doi.org/10.1021/ma011859j
  269. Y. Morikawa, S. Nagano, K. Watanabe, K. Kamata, T. Iyoda, and T. Seki, Adv. Mater., 18, 883 (2006) https://doi.org/10.1002/adma.200502573
  270. J. Li, K. Kamata, S. Watanabe, and T. Iyoda, Adv. Mater., 19, 1267 (2007) https://doi.org/10.1002/adma.200602851
  271. A. Chen, M. Komura, K. Kamata, and T. Iyoda, Adv. Mater., 20, 763 (2008) https://doi.org/10.1002/adma.200702010
  272. S. Watanabe, R. Fujiwara, M. Hada, Y. Okazaki, and T. Iyoda, Angew. Chem. Int. Ed., 46, 1120 (2007) https://doi.org/10.1002/anie.200603516
  273. R.-M. Ho, Y.-W Chiang, C.-C. Tsai, C.-C. Lin, B.-T. Ko, and B.-H. Huang, J. Am. Chem. Soc., 126, 2704 (2004) https://doi.org/10.1021/ja039627i
  274. Y.-W. Chiang, R.-M. Ho, B.-T. Ko, and C.-C. Lin, Angew. Chem. Int. Ed., 44, 7969 (2005) https://doi.org/10.1002/anie.200502236
  275. W.-H. Tseng, P.-Y. Hsieh, R.-M. Ho, B.-H. Huang, C.-C. Lin, and B. Lotz, Macromolecules, 39, 7071 (2006) https://doi.org/10.1021/ma0608929
  276. R.-M. Ho, C.-K. Chen, Y.-W. Chiang, B.-T. Ko, and C.-C. Lin, Adv. Mater., 18, 2355 (2006) https://doi.org/10.1002/adma.200601135
  277. Y.-T. Tseng, W.-H. Tseng, C.-H. Lin, and R.-M. Ho, Adv. Mater., 19, 3584 (2007) https://doi.org/10.1002/adma.200700042
  278. G. Hadziioannou, Polymer, 42, 9097 (2001) https://doi.org/10.1016/S0032-3861(01)00388-3
  279. J. Liu, E. Sheina, T. Kowalewski, and R. D. McCullough, Angew. Chem. Int. Ed., 41, 329 (2002) https://doi.org/10.1002/1521-3773(20020118)41:2<329::AID-ANIE329>3.0.CO;2-M
  280. B. D. Olsen and R. A. Segalman, Macromolecules, 38, 10127 (2005) https://doi.org/10.1021/ma051468v
  281. B. D. Olsen and R. A. Segalman, Macromolecules, 39, 7078 (2006) https://doi.org/10.1021/ma060994z
  282. Y. F. Tao, B. D. Olsen, V. Ganesan, and R. A. Segalman, Macromolecules, 40, 3320 (2007) https://doi.org/10.1021/ma062876h
  283. C.-A. Dai, W.-C. Yen, Y.-H. Lee, C.-C. Ho, and W.-F Su, J. Am. Chem. Soc., 129, 411036 (2007)
  284. J. H. Kim, M. S. Rahman, J. S. Lee, and J.-W. Park, J. Am. Chem. Soc., 129, 7756 (2007) https://doi.org/10.1021/ja072412e
  285. M. S. Rahman, M. Changez, S. Samal, J.-S. Lee, J. Nanoscience and Nanotechnology, 7, 3892 (2007) https://doi.org/10.1166/jnn.2007.063
  286. Y.-D Shin, S.-H Han, S. Samal, and J.-S Lee, J. Polym. Sci.; Part A: Polym. Chem., 43, 607 (2005) https://doi.org/10.1002/pola.20530
  287. M. S. Rahman, S. Samal, and J.-S. Lee, Macromolecules, 39, 5009 (2006) https://doi.org/10.1021/ma060375q
  288. A. Urbas, R. Sharp, Y. Fink, E. L. Thomas, M. Xenidou, and L. J. Fetters, Adv. Mater., 12, 812 (2000) https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<812::AID-ADMA812>3.0.CO;2-8
  289. M. Maldovan, C. K. Ullal, W. C. Carter, and E. L. Thomas, Nat. Mater., 2, 664 (2003) https://doi.org/10.1038/nmat979
  290. M. Maldovan and E. L. Thomas, Nat. Mater., 3, 593 (2004) https://doi.org/10.1038/nmat1201
  291. Y. Kang, J. J. Walish, T. Gorishnyy, and E. L. Thomas, Nat. Mater., 6, 957 (2007) https://doi.org/10.1038/nmat2032
  292. A. Urbas, Y. Fink, and E. L. Thomas, Macromolecules, 32, 4748 (1999) https://doi.org/10.1021/ma9903207
  293. D. J. Kinning, K. I. Winey, and E. L. Thomas, Macromolecule, 21, 3502 (1988) https://doi.org/10.1021/ma00190a027
  294. K. I. Winey, E. L. Thomas, and L. J. Fetters, J. Chem. Phys., 95, 9367 (1991) https://doi.org/10.1063/1.461164
  295. K. I. Winey, E. L. Thomas, and L. J. Fetters, Macromolecules, 25, 422 (1992) https://doi.org/10.1021/ma00027a065
  296. K. I. Winey, E. L. Thomas, and L. J. Fetters, Macromolecules, 25, 2645 (1992) https://doi.org/10.1021/ma00036a014
  297. T. Hashimoto, H. Tanaka, and H. Hasegawa, Macromolecules, 23, 4378 (1990) https://doi.org/10.1021/ma00222a009
  298. H. Tanaka and T. Hashimoto, Macromolecules, 24, 5713 (1991) https://doi.org/10.1021/ma00020a035
  299. H. Tanaka, H. Hasegawa, and T. Hashimoto, Macromolecules, 24, 240 (1991) https://doi.org/10.1021/ma00001a037
  300. T. Hashimoto, K. Kimishima, and H. Hasegawa, Macromolecules, 24, 5704 (1991) https://doi.org/10.1021/ma00020a034
  301. T. Hashimoto, K. Yamasaki, S. Koizumi, and H. Hasegawa, Macromolecules, 26, 2895 (1993) https://doi.org/10.1021/ma00063a039
  302. S. Koizumi, H. Hasegawa, and T. Hashimoto, Macromolecules, 27, 6532 (1994) https://doi.org/10.1021/ma00100a044
  303. S. Koizumi, H. Hasegawa, and T. Hashimoto, Macromolecules, 27, 7893 (1994) https://doi.org/10.1021/ma00104a053
  304. R. J. Roe and W. C. Zin, Macromolecules, 17, 189 (1984) https://doi.org/10.1021/ma00132a012
  305. S. Nojima and R. J. Roe, Macromolecules, 20, 1866 (1987) https://doi.org/10.1021/ma00174a029
  306. M. M. Disko, K. S. Liang, S. K. Behal, R. J. Roe, and K. J. Jeon, Macromolecules, 26, 2983 (1993) https://doi.org/10.1021/ma00063a053
  307. C. K. Kang and W. C. Zin, Macromolecules, 25, 3039 (1992) https://doi.org/10.1021/ma00038a006
  308. R. J. Spontak, S. D. Smith, and A. Ashraf, Macromolecules, 26, 956 (1993) https://doi.org/10.1021/ma00057a012
  309. B. L›wenhaupt, A. Steurer, G. P. Hellmann, and Y. Gallot, Macromolecules, 27, 908 (1994) https://doi.org/10.1021/ma00082a005
  310. D. M. Baek, C. D. Han, and J. K. Kim, Polymer, 33, 4821 (1992) https://doi.org/10.1016/0032-3861(92)90698-V
  311. L. Leibler and H. Benoit, Polymer, 2, 195 (1981)
  312. K. M. Hong and J. Noolandi, Macromolecules, 16, 1083 (1983) https://doi.org/10.1021/ma00241a009
  313. M. D. Whitmore and J. Noolandi, Macromolecules, 18, 2486 (1985) https://doi.org/10.1021/ma00154a024
  314. M. W. Matsen, Macromolecules, 28, 5765 (1995) https://doi.org/10.1021/ma00121a011
  315. P. K. Janert and M. Schick, Macromolecules, 31, 1109 (1998) https://doi.org/10.1021/ma971093g
  316. F. S. Bates, W. W. Maurer, P. M. Lipic, M. A. Hillmyer, K. S. Almdal, K. Mortensen, G. H. Fredrickson, and T. P. Lodge, Phys. Rev. Lett., 79, 849 (1997) https://doi.org/10.1103/PhysRevLett.79.849
  317. M. A. Hillmyer, W. W. Maurer, T. P. Lodge, F. S. Bates, and K. S. Almdal, J. Phys. Chem. B., 103, 4814 (1999) https://doi.org/10.1021/jp990089z
  318. N. Zhou, F. S. Bates, and T. P. Lodge, Nano Lett., 6, 2354 (2006) https://doi.org/10.1021/nl061765t
  319. H. S. Lee, A. Roy, and A. S. Badami, Macromol. Res., 15, 160 (2007) https://doi.org/10.1007/BF03218768
  320. M. J. Park, K. H. Downing, A. Jackson, E. D. Gomez, A. M. Minor, D. Cookson, A. Z. Weber, and N. P. Balsara, Nano Lett., 7, 3547 (2007) https://doi.org/10.1021/nl072617l
  321. M. Templin, A. Franck, A. Du Chesne, H. Leist, Y. Zhang, R. Ulrich, V. Schadler, and U. Wiesner, Science, 278, 1795 (1997) https://doi.org/10.1126/science.278.5344.1795
  322. D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, and G. D. Stucky, Science, 279, 548 (1998) https://doi.org/10.1126/science.279.5350.548
  323. C. G. Goltner, S. Henke, M. C. Weisenberger, and M. Antonietti, Agew. Chem. Int. Ed., 37, 613 (1998) https://doi.org/10.1002/(SICI)1521-3773(19980316)37:5<613::AID-ANIE613>3.0.CO;2-G
  324. A. C. Finnefrock, R. Ulrich, G. E. S. Toombers, S. M. Gruner, and U. Wiesner, J. Am. Chem. Soc., 125, 13084 (2003) https://doi.org/10.1021/ja0355170
  325. J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. Disalvo, and U. Wiesner, Nat. Mater., 7, 222 (2008) https://doi.org/10.1038/nmat2111
  326. P. R. L. Malenfant, J. Wan, S. T. Taylor, and M. Manoharan, Nat. Nanotechnology, 2, 43 (2007) https://doi.org/10.1038/nnano.2006.168
  327. Y. Gong, W. Joo, Y. Kim, and J. K. Kim, Chem. Mater., 20, 1203 (2008) https://doi.org/10.1021/cm7026256
  328. P. Mansky, P. M. Chaikin, and E. L. Thomas, J. Mater. Sci., 30, 1987 (1995) https://doi.org/10.1007/BF00353023
  329. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, and D. H. Adamson, Science, 276, 1401 (1997) https://doi.org/10.1126/science.276.5317.1401
  330. M. Park, P. M. Chaikin, R. A. Register, and D. H. Adamson, Appl. Phys. Lett., 79, 257 (2001) https://doi.org/10.1063/1.1378046
  331. T. Hayakawa, T. Kouketsu, M. Kakimoto, H. Yokoyama, and S. Horiuchi, Macromol. Res., 14, 52 (2006) https://doi.org/10.1007/BF03219068
  332. D. H. Kim, Z. Lin, H.-C. Kim, U. Jeong, and T. P. Russell, Adv. Mater., 15, 811 (2003) https://doi.org/10.1002/adma.200304581
  333. D. H. Kim, S. H. Kim, K. Lavery, and T. P. Russell, Nano Lett., 4, 1841 (2004) https://doi.org/10.1021/nl049063w
  334. D. A. Olson, L. Chen, and M. A. Hillmyer, Chem. Mater., 20, 869 (2008) https://doi.org/10.1021/cm702239k
  335. T. P. Russell, G. Coulon, V. R. Deline, and D. C. Miller, Macromolecules, 22, 4600 (1989) https://doi.org/10.1021/ma00202a036
  336. G. Coulon, T. P. Russell, V. R. Deline, and P. F. Green, Macromolecules, 22, 2581 (1989) https://doi.org/10.1021/ma00196a006
  337. S. H. Anastasiadis, T. P. Russell, S. K. Satija, and C. F. Majkrzak, Phys. Rev. Lett., 62, 1852 (1989) https://doi.org/10.1103/PhysRevLett.62.1852
  338. P. Mansky, Y. Liu, E. Huang, T. P. Russell, and C. Hawker, Science, 275, 1458 (1997) https://doi.org/10.1126/science.275.5305.1458
  339. P. Mansky, T. P. Russell, C. J. Hawker, J. Mays, D. C. Cook, and S. K. Satija, Phys. Rev. Lett., 79, 237 (1997) https://doi.org/10.1103/PhysRevLett.79.237
  340. E. Huang, T. P. Russell, C. Harrison, P. M. Chaikin, R. A. Register, C. J. Hawker, and J. Mays, Macromolecules, 31, 7641 (1998) https://doi.org/10.1021/ma980705+
  341. D. Y. Ryu, K. Shin, E. Drockenmuller, C. J. Hawker, and T. P. Russell, Science, 308, 236 (2005) https://doi.org/10.1126/science.1106604
  342. E. Drockenmuller, L. Y. T. Li, D. Y. Ryu, E. Harth, T. P. Russell, H. C. Kim, and C. J. Hawker, J. Polym. Sci.; Part A: Polym. Chem., 43, 1028 (2005) https://doi.org/10.1002/pola.20553
  343. E. Kim, C. Shin, H. Ahn, D. Y. Ryu, J. Bang, C. J. Hawker, and T. P. Russell, Soft Matter, 4, 475 (2008) https://doi.org/10.1039/b717903k
  344. J. Bang, J. Bae, P. Lswenhielm, C. Spiessberger, S. A. Given-Beck, T. P. Russell, and C. J. Hawker, Adv. Mater., 19, 4552 (2007) https://doi.org/10.1002/adma.200701866
  345. K. Amundson, E. Helfand, S. S. Patel, X. Quan, and S. D. Smith, Macromolecules, 25, 1935 (1992) https://doi.org/10.1021/ma00033a016
  346. K. Amundson, E. Helfand, X. Quan, and S. D. Smith, Macromolecules, 26, 2698 (1993) https://doi.org/10.1021/ma00063a010
  347. K. Amundson, E. Helfand, X. Quan, S. D. Hudson, and S. D. Smith, Macromolecules, 27, 6559 (1994) https://doi.org/10.1021/ma00100a047
  348. T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, and T. P. Russell, Science, 273, 931 (1996) https://doi.org/10.1126/science.273.5277.931
  349. P. Mansky, J. DeRouchey, T. P. Russell, J. Mays, M. Pitsikalis, T. Morkved, and H. Jaeger, Macromolecules, 31, 4399 (1998) https://doi.org/10.1021/ma980299u
  350. T. Thurn-Albrecht, R. Steiner, J. DeRouchey, C. M. Stafford, E. Huang, M. Bal, M. Tuominen, C. J. Hawker, and T. P. Russell, Adv. Mater., 12, 787 (2000) https://doi.org/10.1002/(SICI)1521-4095(200006)12:11<787::AID-ADMA787>3.0.CO;2-1
  351. D. H. Kho, S. H. Chae, U. Jeong, H. Y. Kim, and J. K. Kim, Macromolecules, 38, 3820 (2005) https://doi.org/10.1021/ma0495846
  352. T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Block, M. T. Tuominen, and T. P. Russell, Science, 290, 2126 (2000) https://doi.org/10.1126/science.290.5499.2126
  353. T. Grigorova, S. Pispas, N. Hadjichristidis, and T. Thurn-Albrecht, Macromolecules, 38, 7430 (2005) https://doi.org/10.1021/ma050081p
  354. E. Sivaniah, Y. Hayashi, M. Iino, T. Hashimoto, and K. Fukunaga, E. J. Kramer, Macromolecules, 36, 5894 (2003) https://doi.org/10.1021/ma021625f
  355. E. Sivaniah, Y. Hayashi, S. Matsubara, S. Kiyono, T. Hashimoto, K. Fukunaga, E. J. Kramer, and T. Mates, Macromolecules, 38, 1837 (2005) https://doi.org/10.1021/ma0482157
  356. Y. Tsori and D. Andelman, Macromolecules, 36, 8560 (2003) https://doi.org/10.1021/ma034483d
  357. Y. Tsori, E. Sivaniah, D. Andelman, and T. Hashimoto, Macromolecules, 38, 7193 (2005) https://doi.org/10.1021/ma050806p
  358. G. Kim and M. Libera, Macromolecules, 31, 2569 (1998) https://doi.org/10.1021/ma971349i
  359. G. Kim and M. Libera, Macromolecules, 31, 2670 (1998) https://doi.org/10.1021/ma9714070
  360. K. Fukunaga, T. Hashimoto, H. Elbs, and G. Krausch, Macromolecules, 35, 4406 (2002) https://doi.org/10.1021/ma011889m
  361. Y. Xuan, J. Peng, L. Cui, H. Wang, B. Li, and Y. Han, Macromolecules, 37, 7301 (2004) https://doi.org/10.1021/ma0497761
  362. Z. Q. Lin, D. H. Kim, X. D. Wu, L. Boosahda, D. Stone, L. LaRose, and T. P. Russell, Adv. Mater., 14, 1373 (2002) https://doi.org/10.1002/1521-4095(20021002)14:19<1373::AID-ADMA1373>3.0.CO;2-F
  363. S. H. Kim, M. J. Misner, M. Kimura, T. Xu, and T. P. Russell, Adv. Mater., 16, 226 (2004) https://doi.org/10.1002/adma.200304906
  364. S. H. Kim, M. J. Misner, and T. P. Russell, Adv. Mater., 16, 2119 (2004) https://doi.org/10.1002/adma.200306577
  365. T. Xu, J. T. Goldbach, J. Leiston-Belanger, and T. P. Russell, Colloid Polym. Sci., 282, 927 (1994) https://doi.org/10.1007/s00396-004-1109-0
  366. S. H. Kim, M. Misner, L. Yang, O. Gang, B. M. Ocko, and T. P. Russell, Macromolecules, 39, 8473 (2006) https://doi.org/10.1021/ma061170k
  367. J. Ruokolainen, G. H. Fredrickson, E. J. Kramer, C. Y. Ryu, S. F. Hahn, and S. N. Magonov, Macromolecules, 35, 9391 (2002) https://doi.org/10.1021/ma020791k
  368. V. Khanna, E. W. Cochran, A. Hexemer, G. E. Stein, G. H. Fredrickson, E. J. Kramer, X. Li, J. Wang, and S. F. Hahn, Macromolecules, 39, 9346 (2006) https://doi.org/10.1021/ma0609228
  369. T. Xu , H. C. Kim, J. DeRouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford, and T. P. Russell, Polymer, 42, 9091 (2001) https://doi.org/10.1016/S0032-3861(01)00376-7
  370. U. Jeong, H. Kim, R. L. Rodriguez, I. Y. Tsai, C. M. Stafford, J. K. Kim, C. J. Hawker, and T. P. Russell, Adv. Mater., 14, 274 (2002) https://doi.org/10.1002/1521-4095(20020219)14:4<274::AID-ADMA274>3.0.CO;2-M
  371. U. Jeong, D. Y. Ryu, J. K. Kim, D. H. Kim, X. Wu, and T. P. Russell, Macromolecules, 36, 10126 (2003) https://doi.org/10.1021/ma034976i
  372. U. Jeong, D. Y. Ryu, D. H. Kho, D. H. Lee, J. K. Kim, and T. P. Russell, Macromolecules, 36, 3626 (2003) https://doi.org/10.1021/ma034179k
  373. U. Jeong, D. Y. Ryu, J. K. Kim, D. H. Kim, T. P. Russell, and C. J. Hawker, Adv. Mater., 15, 1247 (2003) https://doi.org/10.1002/adma.200304401
  374. Q. Wang, Q. Yan, P. F. Nealy, and J. J. de Pablo, J. Chem. Phys., 112, 450 (2000) https://doi.org/10.1063/1.480639
  375. Q. Wang, P. F. Nealy, and J. J. de Pablo, Macromolecules, 34, 3458 (2001) https://doi.org/10.1021/ma0018751
  376. Q. Wang, P. F. Nealy, and J. J. de Pablo, Macromolecules, 36, 1731 (2003) https://doi.org/10.1021/ma020996t
  377. U. Jeong, D. Y. Ryu, D. H. Kho, J. K. Kim, J. T. Goldbach, D. H. Kim, and T. P. Russell, Adv. Mater., 16, 533 (2004) https://doi.org/10.1002/adma.200306113
  378. K. A. Koppi, M. Tirrel, F. S. Bates, K. Almda, and R. H. Colby, J. Phys II(France), 2, 1941 (1992) https://doi.org/10.1051/jp2:1992245
  379. V. K. Gupta, R. Krishnamoorti, J. A. Kornfield, and S. D. Smith, Macromolecules, 28, 464 (1995)
  380. Z. R. Chen and J. A. Kornfield, Polymer, 39, 4679 (1998) https://doi.org/10.1016/S0032-3861(98)00136-0
  381. R. J. Albalak and E. L. Thomas, J. Polym. Sci.: Polym. Phys. Ed., 31, 37 (1993) https://doi.org/10.1002/polb.1993.090310106
  382. R. J. Albalak and E. L. Thomas, J. Polym. Sci.: Polym. Phys. Ed., 32, 341 (1994) https://doi.org/10.1002/polb.1994.090320216
  383. S. Sakurai, Polymer, 49, 2781 (2008) https://doi.org/10.1016/j.polymer.2008.03.020
  384. D. E. Angelescu, J. H. Waller, J. H Adamson, P. Deshpande, S. Y. Chou, R. A. Register, and P. M. Chaikin, Adv. Mater., 16, 1736 (2004) https://doi.org/10.1002/adma.200400643
  385. D. E. Angelescu, J. H. R. A. Register, and P. M. Chaikin, Adv. Mater., 17, 1878 (2005) https://doi.org/10.1002/adma.200401994
  386. T. Hashimoto, J. Bodycomb, Y. Funaki, and K. Kimishima, Macromolecules, 32, 952 (1999) https://doi.org/10.1021/ma981249s
  387. J. Bodycomb, Y. Funaki, K. Kimishima, and T. Hashimoto, Macromolecules, 32, 2075 (1999) https://doi.org/10.1021/ma981538g
  388. K. Mita, H. Tanaka, K. Saijo, M. Takenaka, and T. Hashimoto, Macromolecules, 40, 5923 (2007) https://doi.org/10.1021/ma070404c
  389. C. De Rosa, C. Park, E. L. Thomas, and B. Lotz, Nature, 405, 433 (2000) https://doi.org/10.1038/35013018
  390. C. De Rosa, C. Park, B. Lotz, J. C. Wittmann, L. J. Fetters, and E. L. Thomas, Macromolecules, 33, 4871 (2000) https://doi.org/10.1021/ma992132m
  391. C. Park, C. De Rosa, L. J. Fetters, B. Lotz, and E. L. Thomas, Adv. Mater., 13, 724 (2001) https://doi.org/10.1002/1521-4095(200105)13:10<724::AID-ADMA724>3.0.CO;2-Z
  392. C. Park, C. D. Rosa, and E. L. Thomas, Macromolecules, 34, 2602 (2001) https://doi.org/10.1021/ma0018603
  393. C. Park, J. Y. Cheng, M. J. Fasolka, A. M. Mayes, C. A. Ross, E. L. Thomas, and C. De Rosa, Appl. Phys. Lett., 79, 848 (2001) https://doi.org/10.1063/1.1389766
  394. R. A. Segalman, H. Yokoyama, and E. J. Kramer, Adv. Mater., 13, 1152 (2001) https://doi.org/10.1002/1521-4095(200108)13:15<1152::AID-ADMA1152>3.0.CO;2-5
  395. R. A. Segalman, K. E. Schaefer, G. H. Fredrickson, E. J. Kramer, and S. Magonov, Macromolecules, 36, 4498 (2003) https://doi.org/10.1021/ma025879c
  396. R. A. Segalman, A. Hexemer, R. C. Hayward, and E. J. Kramer, Macromolecules, 36, 3272 (2003) https://doi.org/10.1021/ma021367m
  397. M. R. Hammond, E. Cochran, G. H. Fredrickson, and E. J. Kramer, Macromolecules, 38, 6575 (2005) https://doi.org/10.1021/ma050479l
  398. M. R. Hammond and E. J. Kramer, Macromolecules, 39, 1538 (2006) https://doi.org/10.1021/ma051912u
  399. J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Appl. Phys. Lett., 81, 3657 (2002) https://doi.org/10.1063/1.1519356
  400. J. Y. Cheng, C. A. Ross, E. L. Thomas, H. I. Smith, and G. J. Vancso, Adv. Mater., 15, 1599 (2003) https://doi.org/10.1002/adma.200305244
  401. J. Y. Cheng, A. M. Mayes, and C. A. Ross, Nature Mater., 3, 823 (2004) https://doi.org/10.1038/nmat1211
  402. P. Chuang, J. Y. Cheng, T. A. Savas, and C. A. Ross, Nano Letters, 6, 2099 (2006) https://doi.org/10.1021/nl061563x
  403. P. Lambooy, T.P. Russell, G. J. Kellogg, A. M. Mayes, P. D. Gallagher, and S. K. Satija, Phys. Rev. Lett., 72, 2899 (1994) https://doi.org/10.1103/PhysRevLett.72.2899
  404. T. P. Russell, P. Lambooy, G. J. Kellogg, A. M. Mayes, P. Lambooy, and T. P. Russell, Macromolecules, 27, 6225 (1994) https://doi.org/10.1021/ma00099a045
  405. D. G. Walton, G. J. Kellogg, and A. M. Mayes, Physica B, 22, 213-214 (1995)
  406. G. J. Kellogg, D. G. Walton, A. M. Mayes, P. Lambooy, T. P. Russell, and P. D. Gallahger, Phys. Rev. Lett., 76, 2503 (1996) https://doi.org/10.1103/PhysRevLett.76.2503
  407. N. Koneripalli, N. Singh, R. Levichy, F. S. Bates, P. G. Gallagher, and S. K. Satija, Macromolecules, 28, 2897 (1995) https://doi.org/10.1021/ma00112a041
  408. K. Shin, H. Xiang, S. I. Moon, T. Kim, T. J. McCarthy, and T. P. Russell, Science, 306, 76 (2004) https://doi.org/10.1126/science.1100090
  409. H. Xiang, K. Shin, T. Kim, S. Moon, T. J. McCarthy, and T. P. Russell, Macromolecules, 37, 5660 (2004) https://doi.org/10.1021/ma049299m
  410. H. Xiang, K. Shin, T. Kim, S. Moon, T. J. McCarthy, and T. P. Russell, J. Polym. Sci.; Part B: Polym. Phys., 43, 3377 (2005) https://doi.org/10.1002/polb.20641
  411. H. Xiang, K. Shin, T. Kim, S. I. Moon, T. J. McCarthy, and T. P. Russell, Macromolecules, 38, 1055 (2005) https://doi.org/10.1021/ma0476036
  412. Y. Wu, G. Cheng, K. Katsov, S. W. Sides, J. Wang, J. Tang, G. H. Fredrickson, M. Moskovits, and G. D. Stucky, Nat. Mater., 3, 816 (2004) https://doi.org/10.1038/nmat1230
  413. B. Yu, P. Sun, T. Chen, Q. Jin, D. Ding, B. Li, and A. C. Shi, Phys. Rev. Lett., 96, 138306 (2006) https://doi.org/10.1103/PhysRevLett.96.138306
  414. P. Chen, H. Liang, and A. C. Shi, Macromolecules, 40, 7329 (2007) https://doi.org/10.1021/ma0705164
  415. B. Yu, B. Li, Q. Jin, D. Ding, and A. C. Shi, Macromolecules, 40, 9133 (2007) https://doi.org/10.1021/ma071624t
  416. H. Yabu, T. Higuchi, and M. Shimomura, Adv. Mater., 17, 2062 (2005) https://doi.org/10.1002/adma.200500255
  417. J. Bang, S. H. Kim, E. E. Drockenmuller, M. J. Misner, T. P. Russell, and C. J. Hawker, J. Am. Chem. Soc., 128, 7622 (2006) https://doi.org/10.1021/ja0608141
  418. S. O. Kim, H. H. Solak, M. P. Stoykovich, N. J. Ferrier, J. J. de Pablo, and P. F. Nealey, Nature, 424, 411 (2003) https://doi.org/10.1038/nature01775
  419. E. W. Edwards, M. F. Montague, H. H. Solak, C. J. Hawker, and P. F. Nealey, Adv. Mater., 16, 1315 (2004) https://doi.org/10.1002/adma.200400763
  420. S. Xiao, X. M. Yang, E. W. Edwards, Y. H. La, and P. F. Nealey, Nanotechnology, 16, S324 (2005) https://doi.org/10.1088/0957-4484/16/7/003
  421. E. W. Edwards, M. P. Stoykovich, H. H. Solak, and P. F. Nealey, Macromolecules, 39, 3598 (2006) https://doi.org/10.1021/ma052335c
  422. M. P. Stoykovich, M. Muller, S. O. Kim, H. H. Solak, E. W. Edwards, J. J. de Pablo, and P. F. Nealey, Science, 308, 1442 (2005) https://doi.org/10.1126/science.1111041
  423. M. P. Stoykovich and P. F. Nealey, Materials Today, 9, 20 (2006)
  424. L. Rockford, Y. Liu, P. Mansky, T. P. Russell, M. Yoon, and S. G. J. Mochrie, Phys. Rev. Lett., 82, 2602 (1999) https://doi.org/10.1103/PhysRevLett.82.2602
  425. L. Rockford, S. G. J. Mochrie, and T. P. Russell, Macromolecules, 34, 1487 (2001) https://doi.org/10.1021/ma001747c
  426. R. G. H. Lammertink, M. A. Hempenius, J. E. van den Enk, V. Z. H. Chan, E. L. Thomas, and G. J. Vancso, Adv. Mater., 12, 98 (2000) https://doi.org/10.1002/(SICI)1521-4095(200001)12:2<98::AID-ADMA98>3.0.CO;2-5
  427. J. Y. Cheng, C. A. Ross, V. Z. H. Chan, E. L. Thomas, R. G. H. Lammertink, and G. J. Vancso, Adv. Mater., 13, 1174 (2001) https://doi.org/10.1002/1521-4095(200108)13:15<1174::AID-ADMA1174>3.0.CO;2-Q
  428. D. Zschech, D. H. Kim, A. P. Milenin, R. Scholz, R. Hillebrand, C. J. Hawker, T. P. Russell, M. Steinhart, and U. Gssele, Nano Lett., 7, 1516 (2007) https://doi.org/10.1021/nl070275d
  429. K. Naito, H. Hieda, M. Sakurai, Y. Kamata, and K. Asakawa, IEEE Trans. on Magnetics, 38, 1949 (2002) https://doi.org/10.1109/TMAG.2002.802847
  430. C. T. Black, K. W. Guarini, K. R. Milkove, S. M. Baker, T. P. Russell, and M. T. Tuominen, Appl. Phys. Lett., 79, 409 (2001) https://doi.org/10.1063/1.1383805
  431. K. W. Guarini, C. T. Black, Y. Zhang, H. Kim, E. M. Silorski, and I. V. Babich, J. Vac. Sci. & Tech. B, 20, 2788 (2002) https://doi.org/10.1116/1.1521730
  432. C. T. Black, Appl. Phys. Lett., 87, 163116 (2005) https://doi.org/10.1063/1.2112191
  433. S. Y. Yang, I. Ryu, H. Y. Kim, J. K. Kim, S. K. Jang, and T. P. Russell, Adv. Mater., 18, 709 (2006) https://doi.org/10.1002/adma.200501500
  434. S. Y. Yang, J. H. Yoon, M. H. Ree, S. K. Jang, and J. K. Kim, Adv. Funct. Mater., 18, 1371 (2008) https://doi.org/10.1002/adfm.200700832
  435. D. H. Kim, K. H. A. Lau, W. Joo, J. Peng, U. Jeong, C. J. Hawker, J. K. Kim, T. P. Russell, and W. Knoll, J. Phys. Chem. B, 110, 15381 (2006) https://doi.org/10.1007/BF03218777
  436. D. H. Kim, K. H. A. Lau, J. W. F. Robertson, O.-J. Lee, U. Jeong, J. I. Lee, C. J. Hawker, T. P. Russell, J. K. Kim, and W. Knoll, Adv. Mater., 17, 2442 (2005) https://doi.org/10.1002/adma.200500170
  437. K. H. A. Lau, D. H. Kim, and W. Knoll, Macromol. Res., 15, 211 (2007) https://doi.org/10.1007/BF03218777
  438. J. H. Yoon, S. Y. Yang, B. D. Lee, W. C. Joo, K. Y. Heo, J. K. Kim, and M. H. Ree, J. Appl. Cryst., 40, 305, (2007) https://doi.org/10.1107/S0021889807000817
  439. W. Joo, M. S. Park, and J. K. Kim, Langmuir, 22, 7960 (2006) https://doi.org/10.1021/la061441k
  440. C. Park, M. Rhue, J. Lim, and C. Kim, Macromol. Res., 15, 39 (2007) https://doi.org/10.1007/BF03218750
  441. Y. K. Lee, S. M. Hong, J. S. Kim, J. H. Im, H. S. Min, E. Subramanyam, K. M. Huh, and S. W. Park, Macromol. Res., 15, 330 (2007) https://doi.org/10.1007/BF03218952
  442. C. Choi, M. K. Jang, and J. W. Nah, Macromol. Res., 15, 623 (2007) https://doi.org/10.1007/BF03218837
  443. G. P. Kim, Y. S. Jung, S. B. Yoon, D. W. Kim, and S. H. Baeck, Macromol. Res., 15, 693 (2007) https://doi.org/10.1007/BF03218952
  444. B. J. Kim, D. K. Oh, and J. Y. Chang, Macromol. Res., 16, 103 (2008) https://doi.org/10.1007/BF03218837
  445. M. Haupt, S. Miller, A. Ladenburger, R. Sauer, K. Thonke, J. P. Spatz, S. Riethmuller, M. Moller, and F. J. Banhart, Appl. Phys., 91, 6057 (2002) https://doi.org/10.1063/1.1465117
  446. J. Cornelissen, R. van Heerbeek, P. C. J. Kamer, J. N. H. Reek, N. Sommerdijk, and R. J. M. Nolte, Adv. Mater., 14, 489 (2002) https://doi.org/10.1002/1521-4095(20020404)14:7<489::AID-ADMA489>3.0.CO;2-Y
  447. J. P. Spatz, S. Mossmer, C. Hartmann, M. Moller, T. Herzog, M. Krieger, H. G. Boyen, P. Ziemann, and B. Kabius, Langmuir, 16, 407 (2000) https://doi.org/10.1021/la990070n
  448. G. KSstle, H. G. Boyen, F. Weigl, G. Lengl, T. Herzog, P. Ziemann, S. RiethmYller, O. Mayer, C. Hartmann, J. P. Spatz, M. Moller, M. Ozawa, F. Banhart, M. G. Garnier, and P. Oelhafen, Adv. Funct. Mater., 13, 853 (2003) https://doi.org/10.1002/adfm.200304332
  449. G. Boyen, G. KSstle, K. ZYrn, T. Herzog, F. Weigl, P. Ziemann, O. Mayer, C. Jerome, M. Msller, S. J. Patz, M. G. Garnier, and P. Oelhafen, Adv. Funct. Mater., 13, 359 (2003) https://doi.org/10.1002/adfm.200304319
  450. S. I. Yoo, B.-H. Sohn, W. C. Zin, S. J. An, and G. C. Yi, Chem. Commun., 2850 (2004)
  451. B. H. Sohn, S. I. Yoo, S. H. Yun, and S. Park, J. Am. Chem. Soc., 123, 12734 (2001) https://doi.org/10.1021/ja0170549
  452. S. H. Yun, B. H. Sohn, J. C. Jung, W. C. Zin, J. K. Lee, and O. Song, Langmuir, 21, 6548 (2005) https://doi.org/10.1021/la050418g
  453. S. H. Yun, S. I. Yoo, J. C. Jung, W. C. Zin, and B. H. Sohn, Chem. Mater., 18, 5646 (2006) https://doi.org/10.1021/cm0618953
  454. A. Ethirajan, U. Wiedwald, H. G. Boyen, B. Kern, L. Han, A. Klimmer, F. Weigl, G. KSstle, P. Ziemann, K. Fauth, J. Cai, R. J. Behm, A. Romanyuk, P. Oelhafen, P. Walther, J. Biskupek, and U. Kaiser, Adv. Mater., 19, 406 (2007) https://doi.org/10.1002/adma.200601759
  455. S. Park, B. Kim, J. Y. Wang, and T. P. Russell, Adv. Mater., 20, 681 (2008) https://doi.org/10.1002/adma.200701997
  456. A. FrYmsdorf, A. Kornowski, S. P. PYtter, H. Stillrich, and L. T. Lee, Small, 3, 880 (2007) https://doi.org/10.1002/smll.200600706
  457. Y. Guo and M. G. Moffitt, Macromolecules, 40, 5868 (2007) https://doi.org/10.1021/ma070855x
  458. H. Zhao, E. P. Douglas, B. S. Harrison, and K. S. Schanze, Langmuir, 17, 8428 (2001) https://doi.org/10.1021/la011348q
  459. M. Moffitt, L. McMahon, V. Pessel, and A. Eisenberg, Chem. Mater., 7, 1185 (1995) https://doi.org/10.1021/cm00054a018
  460. S. W. Yeh, T. L. Wu, and K. H. Wei, Nanotechnology, 16, 683 (2005) https://doi.org/10.1088/0957-4484/16/6/010
  461. C. W. Wang and M. G. Moffitt, Chem. Mater., 17, 3871 (2005) https://doi.org/10.1021/cm0506252
  462. Y. Boontongkong and R. E. Cohen, Macromolecules, 35, 3647 (2002) https://doi.org/10.1021/ma0117357
  463. W. Hwang, M. Ham, B. Sohn, J. Huh, Y. S. Kang, W. Jeong, J. Myoung, and C. Park, Nanotechnology, 16, 2897 (2005) https://doi.org/10.1088/0957-4484/16/12/028
  464. X. Li, S. Tian, Y. Ping, D. H. Kim, and W. Knoll, Langmuir, 21, 9393 (2005) https://doi.org/10.1021/la0514009
  465. X. Li, K. H. A. Lau, D. H. Kim, and W. Knoll, Langmuir, 21, 5212 (2005) https://doi.org/10.1021/la046812g
  466. J. N. Cha, Y. Zhang, H. S. P. Wong, S. Raoux, C. Rettner, L. Krupp, and V. Deline, Chem. Mater., 19, 839 (2007) https://doi.org/10.1021/cm062495i
  467. M. Aizawa and J. M. Buriak, Chem. Mater., 19, 5090 (2007) https://doi.org/10.1021/cm071382b
  468. S. Zou, R. Hong, T. Emrick, and G. C. Walker, Langmuir, 23, 1612 (2007) https://doi.org/10.1021/la0629274
  469. Y. Kang, K. J. Erickson, and T. A. Taton, J. Am Chem. Soc., 127, 13800 (2005) https://doi.org/10.1021/ja055090s
  470. J. Peng, W. Knoll, C. Park, and D. H. Kim, Chem. Mater., 20, 1200 (2008) https://doi.org/10.1021/cm7026042