• 제목/요약/키워드: functional load

검색결과 291건 처리시간 0.03초

원자력발전소의 Main Control Boards에 대한 내진 해석 (Seismic Analysis of the Main Control Boards for Nuclear Power Plant)

  • Byeon, Hoon-Seok;Lee, Joon-Keun;Kim, Jin-Young
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 I
    • /
    • pp.498-498
    • /
    • 2001
  • Seismic qualification of the Main Control Boards for nuclear power plants has been performed with the guideline of AS ME Section III. US NRC Reg. Guide and IEEE 344 code. The analysis model of the Main Control Boards is consist of beam. shell and mass element by using the finite element method. and, at the same time. the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz. which is the upper frequency limit of the seismic load, the response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and functional integrity of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As all the combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, it concludes the Main Control Boards is dynamically qualified for seismic conditions. Although the authors had confirmed the structural and functional integrity of both Main Control Boards and all the component, in this paper only the seismic analysis of the Main Control Board is introduced.

  • PDF

Parametric resonance of composite skew plate under non-uniform in-plane loading

  • Kumar, Rajesh;Kumar, Abhinav;Panda, Sarat Kumar
    • Structural Engineering and Mechanics
    • /
    • 제55권2호
    • /
    • pp.435-459
    • /
    • 2015
  • Parametric resonance of shear deformable composite skew plates subjected to non-uniform (parabolic) and linearly varying periodic edge loading is studied for different boundary conditions. The skew plate structural model is based on higher order shear deformation theory (HSDT), which accurately predicts the numerical results for thick skew plate. The total energy functional is derived for the skew plates from total potential energy and kinetic energy of the plate. The strain energy which is the part of total potential energy contains membrane energy, bending energy, additional bending energy due to additional change in curvature and shear energy due to shear deformation, respectively. The total energy functional is solved using Rayleigh-Ritz method in conjunction with boundary characteristics orthonormal polynomials (BCOPs) functions. The orthonormal polynomials are generated for unit square domain using Gram-Schmidt orthogonalization process. Bolotin method is followed to obtain the boundaries of parametric resonance region with higher order approximation. These boundaries are traced by the periodic solution of Mathieu-Hill equations with period T and 2T. Effect of various parameters like skew angle, span-to-thickness ratio, aspect ratio, boundary conditions, static load factor on parametric resonance of skew plate have been investigated. The investigation also includes influence of different types of linearly varying loading and parabolically varying bi-axial loading.

디지털 신호처리 기능을 강화한 32비트 마이크로프로세서 (A 32-bit Microprocessor with enhanced digital signal process functionality)

  • 문상국
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.820-822
    • /
    • 2005
  • 본 논문에서는 16비트 혹은 32비트 고정 소수점 연산을 지원하는 디지털 신호처리 기능을 강화한 명령어 축소형 마이크로프로세서를 설계하였다. 설계한 마이크로프로세서는 명령어 축소형 마이크로 아키텍쳐의 표준에 따라서 범용 마이크로프로세서의 기능과 디지털 신호처리 프로세서의 기능을 함께 갖추고 있다. 산술연산기능 유닛, 디지털 신호처리 유닛, 메모리 제어 유닛으로 구성되어 있으며, 이 연산 유닛들이 병렬적으로 수행되어 디지털 신호처리 명령이나 로드/스토어 명령어의 지연된 시간을 보상할 수 있게 설계되었다. 이 연산유닛들을 병렬적으로 동작하게 함으로써 5단계 파이프라인의 구조로 고성능 마이크로프로세서를 구현하였다.

  • PDF

보행용 전문 신발과 일반 운동화의 운동역학적 비교 분석 (Sport biomechanical comparative analyses between general sporting shoe and functional walking shoe)

  • 최규정;권희자
    • 한국운동역학회지
    • /
    • 제13권2호
    • /
    • pp.161-173
    • /
    • 2003
  • This study was performed to investigate the kinematic and kinetic differences between functional walking shoe(FWS) and general sports shoe(GSS). The subjects for this study were 4 male adults who had the walking pattern of rearfoot strike with normal feet. The movement of one lower leg was measured using force platform and 3 video cameras while the subjects walked at the velocity of 2/1.5 m/s. The findings of this study were as follows 1. The angle of lower leg-ground and angle of knee with FWS was greater than with GSS at the moment of strike the floor and the moment of second peak ground reaction force. The decreasing rate of angle of ankle was smaller in FWS from the strike phase to the second peak ground reaction force. These mean upright walking and round walking along the shoe surface. 2. The maximal Increased angle of Achilles tendon and the minimal decreased angle of rearfoot were smaller in FWS very significantly(p<0.001). Thus FWS prevent the excessive pronation of ankle and have good of rear-foot control. 3. The vortical ground reaction force and the rate of it to the BW were smaller in FWS statistically(p<0.001). The loading rate was smaller in FWS, too, and thess represent the reduction of load on ankle joint and prevention of injuries on it.

Transient vibration analysis of FG-MWCNT reinforced composite plate resting on foundation

  • Kumar, Puneet;Srinivas, J.
    • Steel and Composite Structures
    • /
    • 제29권5호
    • /
    • pp.569-578
    • /
    • 2018
  • This paper aims to investigate the transient vibration behavior of functionally graded carbon nanotube (FG-CNT) reinforced nanocomposite plate resting on Pasternak foundation under pulse excitation. The plate is considered to be composed of matrix material and multi-walled carbon nanotubes (MWCNTs) with distribution as per the functional grading concept. The functionally graded distribution patterns in nanocomposite plate are explained more appropriately with the layer-wise variation of carbon nanotubes weight fraction in the thickness coordinate. The layers are stacked up in such a way that it yields uniform and three other types of distribution patterns. The effective material properties of each layer in nanocomposite plate are obtained by modified Halpin-Tsai model and rule of mixtures. The governing equations of an illustrative case of simply-supported nanocomposite plate resting on the Pasternak foundation are derived from third order shear deformation theory and Navier's solution technique. A converge transient response of nanocompiste plate under uniformly distributed load with triangular pulse is obtained by varying number of layer in thickness direction. The validity and accuracy of the present model is also checked by comparing the results with those available in literature for isotropic case. Then, numerical examples are presented to highlight the effects of distribution patterns, foundation stiffness, carbon nanotube parameters and plate aspect ratio on the central deflection response. The results are extended with the consideration of proportional damping in the system and found that nanocomposite plate with distribution III have minimum settling time as compared to the other distributions.

후방 십자 인대 단독 손상 환자의 기능적 분석 (Functional analysis of isolated posterior cruciate ligament deficient subjects)

  • 김진구
    • 대한정형외과스포츠의학회지
    • /
    • 제3권1호
    • /
    • pp.66-72
    • /
    • 2004
  • 목적: 후방 십자 인대 손상 환자의 포괄적 기능적 검사를 시행한 후 동일 조건의 정상인과 비교 분석함으로써 생체 내의 보상기전을 알아보고 향후 치료에 유용한 지침을 개발하는데 있다. 연구대상 및 방법: 10명의 후방 십자 인대 손상 환자와 10명의 정상 대조군을 대상으로 운동 범위, 후방 전위 검사, KT-1000을 이용한 후방 전위 검사, 텔로스 스트레스 및 30도 굴곡 전 체중 부하 방사선 검사, 보행 분석, 근전도 검사, 등 운동성 근력 검사 등을 시행하였다. 결과: 이학적, KT-1000, 텔로스 후방 전위 검사에서는 양군 간에 의미 있는 차이를 보였으나 30도 굴곡 전 체중 부하 방사선검사, 굴곡 및 신전건의 근력 검사에서는 차이가 없었다. 보행 시 후방십자인대 결손 군은 초기 착지 시 슬관절 굴곡을 더 적게 하고 입각기 시 슬관절 최대 외반 관성력은 감소하였다(p=0.027). 수직 착지 시 초기 접촉이 일어나는 순간 더 큰 족저 굴곡을 보이므로(p=0.014) 슬관절의 하중 부담을 감소시켰고(p=0.020) 근전도 검사 및 근력에서는 유의한 차이가 없었다. 결론: 후방 십자 인대 손상 후 환자들은 슬관절의 불안정 요소를 줄이고 충격을 최대로 흡수하는 보상 작용을 수행하여 훌륭한 임상적, 기능적 결과를 나타내며 향후 지속적인 연구가 필요하다.

  • PDF

자기카메라에 의한 고속철도 차륜의 구름접촉 피로평가 (Evaluation of Rolling Contact Fatigue Evaluation of Wheel for High Speed Train Using a Scan Type Magnetic Camera)

  • 황지성;권석진;이진이;서정원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.957-965
    • /
    • 2011
  • Recently, railway industry has been developed not only functional parts such as acceleration and high performance of the railway but also emotional parts such as improved ride comfort and blocking noise. However, some important components of railway such as wheel and rail always had exposed too much operation time, cyclic load and rolling contact directly. The variations of load, vibration and chemical compositions were caused of wheel and rail having a lot of different types of contact fatigue damages. Therefore, It is necessary to improve inspection and maintenance technology in order to ensure safety and reliability of railway. Many researchers have already been reported the technology. Magnetic camera, one of the non-destructive testing technique can be used to inspect and evaluate the changes of magnetic field in ferromagnetic and paramagnetic materials with cracks. When an electromagnetic is applied to a specimen, a magnetic field will be distorted around a crack on the specimen. In present paper, the distribution of magnetic property in wheel with cracks using magnetic camera had investigated. The crack can be detected and evaluated by distribution analysis of magnetic field. The magnetic camera technique can be detected and evaluated the crack by rolling contact fatigue.

  • PDF

제어로직 검증 및 운전원 훈련용 연료전지 시뮬레이터 (A Fuel Cell Simulator for Control Logic Verification and Operator Training)

  • 맹좌영;김성호;정원희;강승엽;홍석규;이세경;육심균
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • This research presents a fuel cell simulator for control logic verification and operator training. Nowadays, power industries are focusing on clean energy as a response to new policy. The fuel cell can be the solution for clean energy, but operating technology is not well developed compared to other conventional power plans because of its short history. Therefore we need a simulator to verify the new control strategy and train operators, because the price of a real fuel cell system is too high and mechanically weak to be used for these kind of purposes. To develop the simulator, a 300 KW MCFC(Molten Carbonate Fuel Cell) system was modeled with stack, BOPs(pre-reformer, steam generator, etc) and mechanical components(valves, pipes, pumps, blowers, etc). The process model was integrated to emulated control system and HMI(Human Machine Interface). A static load and open loop tests were conducted for verifying the accuracy of the process model, since it is the most important part in the simulation. After verifying the process model, an automatic load change and start-up tests were conducted to verify the performance of a new control strategy(logic and functional loops).

  • PDF

On post-buckling characteristics of functionally graded smart magneto-electro-elastic nanoscale shells

  • Asrari, Reza;Ebrahimi, Farzad;Kheirikhah, Mohammad Mahdi
    • Advances in nano research
    • /
    • 제9권1호
    • /
    • pp.33-45
    • /
    • 2020
  • Geometrically nonlinear buckling of functionally graded magneto-electro-elastic (FG-MEE) nanoshells with the use of classical shell theory and nonlocal strain gradient theory (NSGT) has been analyzed in present research. Mathematical formulation based on NSGT gives two scale coefficients for simultaneous description of structural stiffness reduction and increment. Functional gradation of material properties is described based on power-law formulation. The nanoshell is under a multi-physical field related to applied voltage, magnetic potential, and mechanical load. Exerting a strong electric voltage, magnetic potential or mechanical load may lead to buckling of nanoshell. Taking into account geometric nonlinearity effects after buckling, the behavior of nanoshell in post-buckling regime can be analyzed. Nonlinear governing equations are reduced to ordinary equations utilizing Galerkin's approach and post-buckling curves are obtained based on an analytical procedure. It will be shown that post-buckling curves are dependent on nonlocal/strain gradient parameters, electric voltage magnitude and sign, magnetic potential magnitude and sign and material gradation exponent.

수산물의 기능성 재사용 포장용기 사용을 통한 물류합리화에 관한 연구 (A Study on the Effects of Functional Reusable Packing Containers for Marine Products on Logistics Rationalization)

  • 김병찬;양대용
    • 디지털산업정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.145-158
    • /
    • 2015
  • Disposable marine product packaging materials such as wooden, Styrofoam, and corrugated cardboard boxes have a very low reuse rate, thus causing the logistics costs to rise and making it difficult to establish a unit load system for marine products. Disposable packing containers to be discarded are accompanied by resource and environmental issues home and abroad. Transportation vehicles for marine products have to return empty without loading different kinds of products after delivery due to the smell and properties of marine products, thus posing as an obstacle to logistics rationalization. In an effort to overcome those limitations, this study examined the stages of transportation including "producer-wholesale market in the producing area-commission merchant-wholesale market in the consumption area-commission merchant-quasi-wholesale market-consumer" and also analyzed the utilization and distribution of disposable packaging materials currently used in the circulation of marine products including wooden, Styrofoam, and corrugated cardboard boxes. Based on the analysis results, the investigator developed a logistics rationalization model capable of promoting semi-permanent reuse and lowering empty vehicle rate on return routes as an alternative to address environmental issues caused by disposable packaging materials, which have been an obstacle to the logistics rationalization of marine products, packaging costs in the process of repeating packing and unpacking at each stage of marine products circulation, and empty vehicle rates on return routes after marine products delivery.