• Title/Summary/Keyword: functional gene

Search Result 1,684, Processing Time 0.04 seconds

Dopamine Transporter Gene and Dopamine D2, D3, D4 Receptor Gene Polymorphisms in Attention Deficit Hyperactivity Disorder (주의력결핍 과잉행동장애에서 도파민 전달체 및 도파민 D2, D3, D4 수용체 유전자 다형성)

  • Park, Pil-Sang;Kim, Dae-Kwang;Jung, Chul-Ho
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.19 no.1
    • /
    • pp.19-27
    • /
    • 2008
  • Objectives : The aim of this study was to examine the association of attention-deficit hyperactivity disorder (ADHD) in Korean populations with functional polymorphisms of six genes dopamine receptors (Ser311/Cys311 polymorphism, Taq1 A polymorphism, and Taq1 B polymorphism in DRD2, BalI polymorphism in DRD3, and promoter -521 C/T polymorphism and exon III 48 bp repeat polymorphism in DRD4) and one gene in dopamine transporter (DAT1). Methods : Participants were 58 children with ADHD and 110 control children. The genotypes were determined by PCR. Results : There was a statistically significant difference in genotype frequency of -521 C/T polymorphism within the promoter region of the DRD4 between two groups. Furthermore, in the male group, both genotype and allele frequencies showed statistically significant differences. Conclusion : Findings of the study indicate that -521 C/T polymorphism in promoter region of DRD4 appears to be a possible candidate gene for ADHD in Korean population.

  • PDF

Enhanced Homologous Recombination in Fusarium verticillioides by Disruption of FvKU70, a Gene Required for a Non-homologous End Joining Mechanism

  • Choi, Yoon-E.;Shim, Won-Bo
    • The Plant Pathology Journal
    • /
    • v.24 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Fusarium verticillioides (teleomorph Gibberella moniliformis) is associated with maize worldwide causing ear rot and stalk rot, and produces fumonisins, a group of mycotoxins detrimental to humans and animals. While research tools are available, our understanding of the molecular mechanisms associated with fungal virulence and fumonisin biosynthesis in F. verticillioides is still limited. One of the restraints that hampers F. verticillioides gene characterization is the fact that homologous recombination (HR) frequency is very low (<2%). Screening for a true gene knock-out mutant is a laborious process due to a high number of ectopic integrations. In this study, we generated a F. verticillioides mutant (SF41) deleted for FvKU70, a gene directly responsible for non-homologous end-joining mechanism, with the aim of improving HR frequency. Here, we demonstrate that FvKU70 deletion does not impact key Fverticillioides phenotypes, e.g., development, secondary metabolism, and virulence, while dramatically improving HR frequency. Significantly, we also confirmed that a high percentage (>85%) of the HR mutant strains harbor a desired mutation with no additional copy of the mutant allele inserted in the genome. We conclude that SF41 is suitable for use as a type strain when performing high-throughput gene function studies in F. verticillioides.

The Effects of Fasting and Grazing on Na-glucose Cotransporter-1 (SGLT-1) Gene Expression of Rectal Epithelia in Beef Cattle

  • Kozakai, Takaharu;Imura, K.;Nakajima, K.;Sakanoue, S.;Watanabe, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.232-237
    • /
    • 2009
  • The expression of SGLT-1 mRNA has been reported in the small intestine of mammals and the rectum of chickens. However, the expression and functional significance of SGLT-1 in bovine rectum is not known. In this study, we studied the effects of fasting and grazing on SGLT-1 gene expression in biopsy epithelial tissue of bovine rectum. In Japanese Black beef cattle, i) SGLT-1 gene expression was measured by quantitative real-time PCR in the biopsy rectal epithelia samples obtained through an endoscope, ii) SGLT-1 gene expression in the rectal epithelial tissues increased at 48 and 72 h after fasting correlating with a decrease in body weight. iii) SGLT-1 gene expression decreased after one month from the start of grazing (May to June) and then stabilized until the end of the grazing period (June to October) in the rectal epithelial tissues of grazing cattle. In conclusion, it is clear that SGLT-1 gene expression in the rectal epithelial tissue is increased by a restricted dietary condition.

Alternative Production of Avermectin Components in Streptomyces avermitilis by Gene Replacement

  • Yong Joon-Hyoung;Byeon Woo-Hyeon
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.277-284
    • /
    • 2005
  • The avermectins are composed of eight compounds, which exhibit structural differences at three positions. A family of four closely-related major components, A1a, A2a, B1a and B2a, has been identified. Of these components, B1a exhibits the most potent antihelminthic activity. The coexistence of the '1' components and '2' components has been accounted for by the defective dehydratase of aveAI module 2, which appears to be responsible for C22-23 dehydration. Therefore, we have attempted to replace the dehydratase of aveAI module 2 with the functional dehydratase from the erythromycin eryAII module 4, via homologous recombination. Erythromycin polyketide synthetase should contain the sole dehydratase domain, thus generating a saturated chain at the C6-7 of erythromycin. We constructed replacement plasmids with PCR products, by using primers which had been derived from the sequences of avermectin aveAI and the erythromycin eryAII biosynthetic gene cluster. If the original dehydratase of Streptomyces avermitilis were exchanged with the corresponding erythromycin gene located on the replacement plasmid, it would be expected to result in the formation of precursors which contain alkene at C22-23, formed by the dehydratase of erythromycin module 4, and further processed by avermectin polyketide synthase. Consequently, the resulting recombinant strain JW3105, which harbors the dehydratase gene derived from erythromycin, was shown to produce only C22,23-unsaturated avermectin compounds. Our research indicates that the desired compound may be produced via polyketide gene replacement.

Identification of the Nitrifying Archaeal Phylotype Carrying Specific amoA Gene by Applying Digital PCR (디지털 PCR을 응용한 특정 amoA유전자를 가진 질산화 Archaea 동정)

  • Park, Byoung-Jun;Park, Soo-Je;Rhee, Sung-Keun
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.232-235
    • /
    • 2007
  • Mesophilic Crenarchaeota have been known to be predominant among ammonia-oxidizing microorganisms in terrestrial and marine environments. In this study, we determined the archaeal phylotypes carrying specific amoA by combining digital PCR and multiplex-nested PCR. Analysis of samples in which amoA and 16S rRNA gene were amplified showed that amoA gene diversity was relatively higher than that of 16S rRNA gene. Nitrifying archaeal group I.1a was dominant over I.1b group of crenarchaota and euryarchaeota. This approach could be applied for interrelating a functional gene to a specific phylotype in natural environments.

Isolation and Functional Analysis of spy1 Responsible for Pristinamycin Yield in Streptomyces pristinaespiralis

  • Jin, Qingchao;Yin, Huali;Hong, Xiaowei;Jin, Zhihua
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.793-799
    • /
    • 2012
  • A gene related to high pristinamycin yield in Streptomyces pristinaespiralis was selected by amplified fragment length polymorphism (AFLP) and its functions were investigated by gene disruption. First, a 561 bp polymorphic sequence was acquired by AFLP from high-yield recombinants compared with the S. pristinaespiralis ancestor ATCC25486, indicating that this approach is an effective means of screening for valuable genes responsible for antibiotic yield. Then, a 2,127 bp open reading frame of a gene designated spy1 that overlaps with the above fragment was identified and its structure and biological functions were investigated. In silico analysis of spy1 encoding a deduced 708-amino-acid-long serine/threonine protein kinase showed that it only contains a catalytic domain in the N-terminal region, which is different from some known homologs. Gene inactivation of chromosomal spy1 indicated that it plays a pleiotropic regulatory function in pristinamycin production, with a positive correlation to pristinamycin I biosynthesis and a negative correlation to pristinamycin II biosynthesis.

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong;Cho, Yong-Min;Lee, Seung-Hwan;Chai, Han-Ha;Kim, Tae-Hun
    • Reproductive and Developmental Biology
    • /
    • v.37 no.4
    • /
    • pp.185-192
    • /
    • 2013
  • Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Identification of chromosomal translocation causing inactivation of the gene encoding anthocyanidin synthase in white pomegranate (Punica granatum L.) and development of a molecular marker for genotypic selection of fruit colors

  • Jeong, Hyeon-ju;Park, Moon-Young;Kim, Sunggil
    • Horticulture, Environment, and Biotechnology : HEB
    • /
    • v.59 no.6
    • /
    • pp.857-864
    • /
    • 2018
  • Previous studies have not detected transcripts of the gene encoding anthocyanidin synthase (ANS) in white pomegranates (Punica granatum L.) and suggest that a large-sized insertion in the coding region of the ANS gene might be the causal mutation. To elucidate the identity of the putative insertion, 3887-bp 5' and 3392-bp 3' partial sequences of the insertion site were obtained by genome walking and a gene coding for an expansin-like protein was identified in these genome-walked sequences. An identical protein (GenBank accession OWM71963) isolated from pomegranate was identified from BLAST search. Based on information of OWM71963, a 5.8-Mb scaffold sequence with genes coding for the expansin-like protein and ANS were identified. The scaffold sequence assembled from a red pomegranate cultivar also contained all genome-walked sequences. Analysis of positions and orientations of these genes and genome-walked sequences revealed that the 27,786-bp region, including the 88-bp 5' partial sequences of the ANS gene, might be translocated into an approximately 22-kb upstream region in an inverted orientation. Borders of the translocated region were confirmed by PCR amplification and sequencing. Based on the translocation mutation, a simple PCR codominant marker was developed for efficient genotyping of the ANS gene. This molecular marker could serve as a useful tool for selecting desirable plants at young seedling stages in pomegranate breeding programs.

Anticancer Properties of Psidium guajava - a Mini-Review

  • Correa, Mariana Goncalves;Couto, Jessica Soldani;Teodoro, Anderson Junger
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4199-4204
    • /
    • 2016
  • Cancer is a complex disease caused by a progressive accumulation of multiple genetic mutations. Consumption of fruits is associated with lower risk of several cancers, which is mainly associated to their phytochemical content. The use of functional foods and chemopreventive compounds seems to contribute in this process, acting by mechanisms of antioxidant, anti-inflammatory, anti-angiogenic and hormonal. The Psidium Guajava has high potential functional related to pigments who are involved in the process of cancer prevention by having antioxidant activity. The aim of the present review is to expose some chemical compounds from P. Guajava fractions and their association with anti-carcinogenic function. The evidences supports the theory of anticancer properties of P. Guajava, although the mechanisms are still not fully elucidated, but may include scavenging free radicals, regulation of gene expression, modulation of cellular signalling pathways including those involved in DNA damage repair, cell proliferation and apoptosis.

Functional Screening of Plant Genes Suppressed Salt Sensitive Phenotype of Calcineurin Deficient Mutant through Yeast Complementation Analysis (애기장대의 염해 저항성 관련 유전자의 기능적 선별)

  • Moon, Seok-Jun;Park, Soo-Kwon;Hwang, Un-Ha;Lee, Jong-Hee;Han, Sang-Ik;Nam, Min-Hee;Park, Dong-Soo;Shin, Dongjin
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA library into a salt-sensitive calcineurin (CaN)-deficient ($cnb{\Delta}$) yeast mutant and isolated the colonies which can suppress salt-sensitive phenotype of $cnb{\Delta}$ mutant. Through this functional complementation screen, a total of 34 colonies functionally suppressed the salt-sensitive phenotype of $cnb{\Delta}$ yeast cells, and sequencing analysis revealed that these are 9 genes, including CaS, AtSUMO1 and AtHB-12. Among these genes, the ectopic expression of CaS gene increased salt tolerance in yeast, and CaS transcript was up-regulated under high salinity conditions. CaS-antisense transgenic plants showed reduced root elongation under 100 mM NaCl treatment compared to the wild type plant, which survived under 150 mM NaCl treatment, whereas CaS-antisense transgenic plant leaves turned yellow under 150 mM NaCl treatment. These results indicate that the expression of CaS gene is important for stress tolerance in yeast and plants.