Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.1.1

Functional Screening of Plant Genes Suppressed Salt Sensitive Phenotype of Calcineurin Deficient Mutant through Yeast Complementation Analysis  

Moon, Seok-Jun (Bio-crop Development Division, National Academy of Agricultural Science, RDA)
Park, Soo-Kwon (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Hwang, Un-Ha (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Lee, Jong-Hee (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Han, Sang-Ik (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Nam, Min-Hee (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Park, Dong-Soo (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Shin, Dongjin (Function Crop Resource Development Division, Department of Functional Crops, National Institute of Crop Science, RDA)
Publication Information
Journal of Life Science / v.23, no.1, 2013 , pp. 1-7 More about this Journal
Abstract
Understanding salt tolerance mechanisms is important for the increase of crop yields, and so, several screening approaches were developed to identify plant genes which are involved in salt tolerance of plants. Here, we transformed the Arabidopsis cDNA library into a salt-sensitive calcineurin (CaN)-deficient ($cnb{\Delta}$) yeast mutant and isolated the colonies which can suppress salt-sensitive phenotype of $cnb{\Delta}$ mutant. Through this functional complementation screen, a total of 34 colonies functionally suppressed the salt-sensitive phenotype of $cnb{\Delta}$ yeast cells, and sequencing analysis revealed that these are 9 genes, including CaS, AtSUMO1 and AtHB-12. Among these genes, the ectopic expression of CaS gene increased salt tolerance in yeast, and CaS transcript was up-regulated under high salinity conditions. CaS-antisense transgenic plants showed reduced root elongation under 100 mM NaCl treatment compared to the wild type plant, which survived under 150 mM NaCl treatment, whereas CaS-antisense transgenic plant leaves turned yellow under 150 mM NaCl treatment. These results indicate that the expression of CaS gene is important for stress tolerance in yeast and plants.
Keywords
NaCl; salt tolerance; yeast genetic system;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zhou, J., Wang, X., Jiao, Y., Qin, Y., Liu, X., He, K., Chen, C., Ma, L., Wang, J., Xiong, L., Zhang, Q., Fan, L. and Deng, X. W. 2007. Global genome expression analysis of rice in response to drought and high-salinity stresses in shoot, flag leaf, and panicle. Plant Mol Biol 63, 591-608.   DOI   ScienceOn
2 Shin, D., Koo, Y. D., Lee, J., Lee, H. J., Baek, D., Lee, S., Cheon, C. I., Kwak, S. S., Lee, S. Y. and Yun, D. J. 2004. Athb-12, a homeobox-leucine zipper domain protein from Arabidopsis thaliana, increases salt tolerance in yeast by regulating sodium exclusion. Biochem Biophys Res Commun 323, 534-540.   DOI   ScienceOn
3 Staxen, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M. and McAinsh, M. R. 1999. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc Natl Acad Sci USA 96, 1779-1784.   DOI   ScienceOn
4 Tang, R. H., Han, S., Zheng, H., Cook, C. W., Choi, C. S., Woerner, T. E., Jackson, R. B. and Pei, Z. M. 2007. Coupling diurnal cytosolic Ca2+ oscillations to the CAS-IP3 pathway in Arabidopsis. Science 315, 1423-1426.   DOI   ScienceOn
5 Tracy, F. E., Gilliham, M., Dodd, A. N., Webb, A. A. and Tester, M. 2008. NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31, 1063-1073.   DOI   ScienceOn
6 Wu, S. J., Ding, L. and Zhu, J. K. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8, 617-627.   DOI   ScienceOn
7 Yamaguchi-Shinozaki, K. and Shinozaki, K. 1993. Characterization of the expression of a desiccation-responsive rd29 gene of Arabidopsis thaliana and analysis of its promoter in transgenic plants. Mol Gen Genet 236, 331-340.   DOI   ScienceOn
8 Yamaguchi-Shinozaki, K. and Shinozaki, K. 1994. A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264.   DOI   ScienceOn
9 Yokoi, S., Quintero, F. J., Cubero, B., Ruiz, M. T., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 2002. Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30, 529-539.   DOI   ScienceOn
10 Raghavendra, A. S., Gonugunta, V. K., Christmann, A. and Grill, E. 2010. ABA perception and signalling. Trends Plant Sci 15, 395-401.   DOI   ScienceOn
11 Reddy, A. S., Ali, G. S., Celesnik, H. and Day, I. S. 2011. Coping with stresses: roles of calcium- and calcium/calmodulin- regulated gene expression. Plant Cell 23, 2010-2032.   DOI   ScienceOn
12 Shi, H., Quintero, F. J., Pardo, J. M. and Zhu, J. K. 2002. The putative plasma membrane Na(+)/H(+) antiporter SOS1 controls long-distance Na(+) transport in plants. Plant Cell 14, 465-477.   DOI   ScienceOn
13 Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi-Shinozaki, K. 2004. Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol 136, 2734-2746.   DOI   ScienceOn
14 Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y. and Shinozaki, K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31, 279-292.   DOI   ScienceOn
15 Serrano, R. and Rodriguez-Navarro, A. 2001. Ion homeostasis during salt stress in plants. Curr Opin Cell Biol 13, 399-404.   DOI   ScienceOn
16 Pouchkina-Stantcheva, N. N., McGee, B. M., Boschetti, C., Tolleter, D., Chakrabortee, S., Popova, A. V., Meersman, F., Macherel, D., Hincha, D. K. and Tunnacliffe, A. 2007. Functional divergence of former alleles in an ancient asexual invertebrate. Science 318, 268-271.   DOI   ScienceOn
17 Liu, Y., Chakrabortee, S., Li, R., Zheng, Y. and Tunnacliffe, A. 2011. Both plant and animal LEA proteins act as kinetic stabilisers of polyglutamine-dependent protein aggregation. FEBS Lett 585, 630-634.   DOI   ScienceOn
18 Lois, L. M., Lima, C. D. and Chua, N. H. 2003. Small ubiquitin- like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359.   DOI   ScienceOn
19 Mendoza, I., Quintero, F. J., Bressan, R. A., Hasegawa, P. M. and Pardo, J. M. 1996. Activated calcineurin confers high tolerance to ion stress and alters the budding pattern and cell morphology of yeast cells. J Biol Chem 271, 23061-23067.   DOI   ScienceOn
20 Munns, R. and Tester, M. 2008. Mechanisms of salinity tolerance. Annu Rev Plant Biol 59, 651-681.   DOI   ScienceOn
21 Nagaoka, S. and Takano, T. 2003. Salt tolerance-related protein STO binds to a Myb transcription factor homologue and confers salt tolerance in Arabidopsis. J Exp Bot 54, 2231-2237.   DOI   ScienceOn
22 Naranjo, M. A., Forment, J., Roldan, M., Serrano, R. and Vicente, O. 2006. Overexpression of Arabidopsis thaliana LTL1, a salt-induced gene encoding a GDSL-motif lipase, increases salt tolerance in yeast and transgenic plants. Plant Cell Environ 29, 1890-1900.   DOI   ScienceOn
23 Catala, R., Ouyang, J., Abreu, I. A., Hu, Y., Seo, H., Zhang, X. and Chua, N. H. 2007. The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966.   DOI   ScienceOn
24 Conti, L., Price, G., O'Donnell, E., Schwessinger, B., Dominy, P. and Sadanandom, A. 2008. Small ubiquitin-like modifier proteases OVERLY TOLERANT TO SALT1 and -2 regulate salt stress responses in Arabidopsis. Plant Cell 20, 2894-2908.   DOI   ScienceOn
25 Espelund, M., Saeboe-Larssen, S., Hughes, D. W., Galau, G. A., Larsen, F. and Jakobsen, K. S. 1992. Late embryogenesis- abundant genes encoding proteins with different numbers of hydrophilic repeats are regulated differentially by abscisic acid and osmotic stress. Plant J 2, 241-252.
26 Forment, J., Naranjo, M. A., Roldan, M., Serrano, R. and Vicente, O. 2002. Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30, 511-519.   DOI   ScienceOn
27 Forsburg, S. L. 2001. The art and design of genetic screens: yeast. Nat Rev Genet 2, 659-668.
28 Godoy, J. A., Pardo, J. M. and Pintor-Toro, J. A. 1990. A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol Biol 15, 695-705.   DOI   ScienceOn
29 Gao, D., Knight, M. R., Trewavas, A. J., Sattelmacher, B. and Plieth, C. 2004. Self-reporting Arabidopsis expressing pH and [$Ca^{2+}$] indicators unveil ion dynamics in the cytoplasm and in the apoplast under abiotic stress. Plant Physiol 134, 898-908.   DOI   ScienceOn
30 Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K. A., Grill, E., Romeis, T. and Hedrich, R. 2010. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proc Natl Acad Sci USA 107, 8023-8028.   DOI   ScienceOn
31 Han, S., Tang, R., Anderson, L. K., Woerner, T. E. and Pei, Z. M. 2003. A cell surface receptor mediates extracellular Ca(2+) sensing in guard cells. Nature 425, 196-200.   DOI   ScienceOn
32 Lippuner, V., Cyert, M. S. and Gasser, C. S. 1996. Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast. J Biol Chem 271, 12859-12866.   DOI   ScienceOn
33 Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K. and Shinozaki, K. 1998. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and lowtemperature- responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406.   DOI