• Title/Summary/Keyword: functional effect

Search Result 5,454, Processing Time 0.031 seconds

Preparation of Poly(lactic acid) Scaffolds by the Particulate Leaching (염 추출법에 의한 폴리락틱산 다공성 지지체 가공)

  • Lee, Ji-Hae;Lee, Jong-Rok;Kang, Ho-Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.324-331
    • /
    • 2003
  • Particulate leaching method for the preparation of porous PLLA scaffolds was carried out and especially, the effect of PLLA/$CHCl_3$ solution concentration on the salt leaching rate and the pore structure of PLLA scaffolds were considered. It was found that maintaining lower PLLA/$CHCl_3$ concentration and higher $CHCl_3$ evaporation temperature in the preparation of PLLA/NaCl mixtures resulted in the enhancement of salt leaching rat e and higher porosity. This is understood that those conditions could minimize the formation of dense PLLA layer on the surface of PLLA/NaCl mixture as well as introducing better porosity on the surface. Higher salt leaching temperature accelerated the salt leaching rate but it seems that there is no influence on the porosity of PLLA scaffolds.

Electro-catalytic Performance of PtRu Catalysts Supported on Urea-treated MWNTs for Methanol Oxidation

  • Park, Jeong-Min;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.159-159
    • /
    • 2009
  • In this work, nitrogen and oxygen functionalities was introduced to the graphite nanofibers (GNFs) and their effect on electrocatalytic performance of the GNF supports for direct methanol fuel cells (DMFCs) was invesigated. The nitrogen and oxygen groups were introduced through the urea treatments and acid treatment, respectively. And, PtRu catalysts deposited on modified GNFs were prepared by a chemical reduction method. The catalysts were characterized by means of elemental analysis, nitrogen adsorption, and X-ray photoelectron spetroscopy (XPS). The structure and morphological characteristics of the catalysts were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). As a result, the Pt-Ru nanoparticles were impregnated on GNFs with good formation in 3-5 nm. And, the cyclic voltammograms for methanol oxidation revealed that the methanol oxidation peak varied depending on changes of surface functional groups. It was thus considered that the PtRu deposition was related to the reduction of PtRu and surface characteristics of the carbon supports. The changes of surface functional groups were related to PtRu reduction, significantly affect the methanol oxidation activity of anode electrocatalysts in DMFCs.

  • PDF

Inhibitory Effect of Ginsenoside-Rp1, a Novel Ginsenoside Derivative, on the Functional Activation of Macrophage-like Cells

  • Park, Tae-Yoon;Cho, Jae-Youl
    • Biomolecules & Therapeutics
    • /
    • v.16 no.4
    • /
    • pp.370-376
    • /
    • 2008
  • Ginsenoside Rp1 (G-Rp1) is a ginseng saponin derivative with chemopreventive and anti-cancer activities. In this study, we examined the regulatory activity of G-Rp1 on the functional activation of macrophages. G-Rp1 remarkably inhibited TNF-$\alpha$ production, LPS-induced cell cytotoxicity, NO production, ROS generation, and phagocytic uptake from lipopolysacchride (LPS)-activated RAW264.7 cells. According to structural feature study using several G-Rp1 analogs, two carbohydrates (glucose-glucose) at R1 position were observedto be highly effective, compared to other structural derivatives. Although the inhibitory activities of G-Rp1 on macrophage functions were not remarkable, several points that G-Rp1 was known to be safe, and that this compound was orally effective, suggest that G-Rp1 may be beneficial in treating macrophage-mediated immunological diseases.

Development of Susceptible Functional Fibers using the Microcapsule of Susceptible Materials(II) ―Photochromic functional fibers― (감성물질의 마이크로캡슐화에 의한 감성기능 섬유의 개발(II) -감광변색 기능섬유-)

  • Kim, Moon Sik;Park, Sun Ju;Lee, Shin Hee;Park, Soo Min
    • Textile Coloration and Finishing
    • /
    • v.8 no.1
    • /
    • pp.73-82
    • /
    • 1996
  • The photochromic dye(spiroxazine, Blue) as a susceptible material was synthesized by condensing 1-nitroso-$\beta$-naphthol with indoline. The melting point of the synthesized spiroxazine dye was 254$^{\circ}C$. Irradiation with ultraviolet light had effect on reversible coloration reaction. The photochromic dye microcapsules were produced by in situ polymerization using urea-formaldehyde prepolymer. The average diameter of the microcapsule was 2.94$\mu$m. The dyeability and washing fastness of the photochromic microcapsule fibers were increased by the pretreatment of cationic agent.

  • PDF

Inhibitory effect of chitosan oligosaccharides on the growth of tumor cells

  • Kim, Se-Kwon;Nam, Mi-Young;Nam, Kyung-Soo
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.416-417
    • /
    • 2000
  • Chitin, a poly $\beta$-(1longrightarrow14)-N-acetyl-D-glucosamine, is best known as a cell wall component of fungi and as a skeletal materials of invertebrates. Chitosan is derived from chitin by deacetylation in the presence of alkali. Chitosan has been developed as new physiological materials since it possesses antibacterial activity, hypocholesterolemic activity and antihypertensive action. However, the actions of chitosan in vivo still remain ambiguous as the physiological functional properties because most animal intestines, especially the human gastrointestinal tract, do not possess enzyme such as chitosanase which directly degrade the $\beta$-glucosidic linkage in chitosan, and consequently the unbroken polymers may be poorly absorbed into the human intestine. Therefore, recent studies as chitosan have attracted interest for chitosan oligosaccharides, because the oligosaccharides process not only water-soluble property but also versatile functional properties such as antitumor activity, immune-enhancing effects, enhancement of protective effects against infection with some pathogens in mice and antimicrobial activity (Kingsnorth et al., 1983, Mori et al., 1997). (omitted)

  • PDF

The Study on Inner Air Pollutants Absorptional Capability of Functional Mortar using Properties of Zeolite Powder (제올라이트계 분말을 이용한 기능성 모르터의 실내공기 오염물질 흡착 성능에 관한 연구)

  • Shin Yong-Jae;Heo Jae-Won;Kim Hyo-Youl;Lee Jong-Il;Lim Nam-Gi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.63-69
    • /
    • 2006
  • In a traditional society, building materials were developed fulfilling the requirements of conveniences and functionalities such as safety, construction work, durability and economical efficiency. However, as the concern about environmental or users' health issues has been elevated recently, research and development about eco-friendly material are alto vigorously promoted further In addition, thanks to the steady growth of domestic industry, the amount of discharged industrial by-product is getting increasing. However, its recycling rate remain at low level as most industrial by-products are filled up in the land, which worsen the environmental pollution. Zeolite powder is cement admixture and is expected to have constraining effect of factors causing symptoms of inhabitants in a new house and alleviates the amount of discharged harmful elements emitted from hardened cement.

  • PDF

Application of LFH-PCR for the Disruption of SpoIIIE and SpoIIIG of B. subtilis

  • Kim, June-Hyung;Kim, Byung-Gee
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.5
    • /
    • pp.327-331
    • /
    • 2000
  • The application of LFH-PCR(long flanking homology region-PCR) for Bacillus subtilis gene disruption is presented. Without plasmid- or phage-vector construction, only by PCR, based on a DNA sequence retrieved from B. subtilis genome data base, kanamycin resistance gene was inserted into two genes of B. subtilis involved in sporulation, spoIIIE and spoIIIG. The effect of gene disruption on subtilisin expression was examined and the sporulation frequency of two mutants was compared to that of the host strain. For this purpose, only 2 or 3 rounds of PCR were required with 4 primers. We first demonstrated the possibility of LFH-PCR for rapid gene disruption to characterize an unknown functional gene of B. subtilis or other prokaryote in the genomic era.

  • PDF

A Study on Performance Evaluation of Multipurpose Functional Synthetic Resin Formworks (다목적 기능 합성수지 거푸집 성능평가에 관한 연구)

  • Kim, Tae-Hui;Ahn, Sung-Jin;Choi, Suk;Nam, Kyung-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.245-246
    • /
    • 2018
  • This paper is a multipurpose functional synthetic resin formwork which can replace existing euro form. We tried to improve the disadvantages such as work noise, stenosis, recyclability, and workability of Euroform system. As a result of the test, Euroform showed an average of 106.7dB and synthetic resin formwork showed an average of 100.4dB. Therefore, it is considered that the synthetic resin formwork has a great effect of noise reduction compared to the euro form.

  • PDF

Effect of Tris(trimethylsilyl) Phosphate Additive on the Electrochemical Performance of Nickel-rich Cathode Materials at High Temperature

  • Jang, Seol Heui;Mun, Junyoung;Kang, Dong-Ku;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.162-168
    • /
    • 2017
  • $LiNi_xCo_yMn_zO_2$ cathode materials have been the focus of much attention because of their high specific capacity. However, because of the poor interfacial stability between cathodes and electrolytes, the cycling performance of these materials fades rapidly, especially at high temperatures. In the present paper, we propose the use of tris(trimethylsilyl) phosphate (TMSPO), which contains phosphate and silyl functional groups, as a functional additive in electrolytes. The addition of TMSPO resulted in the formation of cathode electrolyte interphase (CEI) layers on the surfaces of the cathodes and effectively suppressed electrolyte decomposition reactions, even at high temperatures. As a result, cells cycled with TMSPO exhibited remarkable capacity, which remained after 50 cycles (82.0%), compared to cells cycled without TMSPO (64.6%).

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.