• Title/Summary/Keyword: functional effect

Search Result 5,433, Processing Time 0.034 seconds

Effect of Oral Motor Facilitation Technique (OMFT) and Neuromuscular Electrical Stimulation (NMES) Applied to a Patient With Wallenberg's Syndrome: A Case Study (발렌버그 증후군(Wallenberg's Syndrome) 환자에게 적용한 구강운동촉진기술(OMFT)과 신경근전기자극치료(Neuromusclular Electrical Stimulation; NMES) 효과: 단일 사례 연구)

  • Son, Yeong Soo;Min, Kyoung Chul;Woo, Hee-Soon
    • Therapeutic Science for Rehabilitation
    • /
    • v.11 no.4
    • /
    • pp.69-83
    • /
    • 2022
  • Objective : This study aimed to confirm the possibility of the clinical application of oral motor facilitation technique (OMFT) protocol and neuromuscular electrical stimulation (NMES) in patients with Wallenberg syndrome. Methods : One patient with Wallenberg syndrome was treated with OMFT and NMES applied 40 times each, 5 days a week, twice a day for 4 weeks. The Comprehensive Oral-Facial Function Scale (COFFS), Korean-Mann Swallowing Ability Assessment (K-MASA), and Penetration-Aspiration Scale (PAS) were used to compare the changes before and after the intervention. Data analysis was used to compare the score changes before and after the intervention. Results : Orofacial function and swallowing ability improved after the intervention in the individual who participated in this study. Among oral motor functions, relatively greater functional improvement was observed in tongue movement compared to other functions, which was evaluated to the extent that pharyngeal swallowing was possible. Conclusions : Early swallowing rehabilitation using systematic OMFT and NMES of exercise intensity confirmed the possibility of improving oral motor function and dysphagia. In the future, complementary studies on the effects of interventions applying the OMFT and NMES will be needed.

Crosstalk between BMP signaling and KCNK3 in phenotypic switching of pulmonary vascular smooth muscle cells

  • Yeongju, Yeo;Hayoung, Jeong;Minju, Kim;Yanghee, Choi;Koung Li, Kim;Wonhee, Suh
    • BMB Reports
    • /
    • v.55 no.11
    • /
    • pp.565-570
    • /
    • 2022
  • Pulmonary arterial hypertension (PAH) is a progressive and devastating disease whose pathogenesis is associated with a phenotypic switch of pulmonary arterial vascular smooth muscle cells (PASMCs). Bone morphogenetic protein (BMP) signaling and potassium two pore domain channel subfamily K member 3 (KCNK3) play crucial roles in PAH pathogenesis. However, the relationship between BMP signaling and KCNK3 expression in the PASMC phenotypic switching process has not been studied. In this study, we explored the effect of BMPs on KCNK3 expression and the role of KCNK3 in the BMP-mediated PASMC phenotypic switch. Expression levels of BMP receptor 2 (BMPR2) and KCNK3 were downregulated in PASMCs of rats with PAH compared to those in normal controls, implying a possible association between BMP/BMPR2 signaling and KCNK3 expression in the pulmonary vasculature. Treatment with BMP2, BMP4, and BMP7 significantly increased KCNK3 expression in primary human PASMCs (HPASMCs). BMPR2 knockdown and treatment with Smad1/5 signaling inhibitor substantially abrogated the BMP-induced increase in KCNK3 expression, suggesting that KCNK3 expression in HPASMCs is regulated by the canonical BMP-BMPR2-Smad1/5 signaling pathway. Furthermore, KCNK3 knockdown and treatment with a KCNK3 channel blocker completely blocked BMP-mediated anti-proliferation and expression of contractile marker genes in HPAMSCs, suggesting that the expression and functional activity of KCNK3 are required for BMP-mediated acquisition of the quiescent PASMC phenotype. Overall, our findings show a crosstalk between BMP signaling and KCNK3 in regulating the PASMC phenotype, wherein BMPs upregulate KCNK3 expression and KCNK3 then mediates BMP-induced phenotypic switching of PASMCs. Our results indicate that the dysfunction and/or downregulation of BMPR2 and KCNK3 observed in PAH work together to induce aberrant changes in the PASMC phenotype, providing insights into the complex molecular pathogenesis of PAH.

Comparative metabolomic analysis in horses and functional analysis of branched chain (alpha) keto acid dehydrogenase complex in equine myoblasts under exercise stress

  • Jeong-Woong, Park;Kyoung Hwan, Kim;Sujung, Kim;Jae-rung, So;Byung-Wook, Cho;Ki-Duk, Song
    • Journal of Animal Science and Technology
    • /
    • v.64 no.4
    • /
    • pp.800-811
    • /
    • 2022
  • The integration of metabolomics and transcriptomics may elucidate the correlation between the genotypic and phenotypic patterns in organisms. In equine physiology, various metabolite levels vary during exercise, which may be correlated with a modified gene expression pattern of related genes. Integrated metabolomic and transcriptomic studies in horses have not been conducted to date. The objective of this study was to detect the effect of moderate exercise on the metabolomic and transcriptomic levels in horses. In this study, using nuclear magnetic resonance (NMR) spectroscopy, we analyzed the concentrations of metabolites in muscle and plasma; we also determined the gene expression patterns of branched chain (alpha) keto acid dehydrogenase kinase complex (BCKDK), which encodes the key regulatory enzymes in branched-chain amino acid (BCAA) catabolism, in two breeds of horses, Thoroughbred and Jeju, at different time intervals. The concentrations of metabolites in muscle and plasma were measured by 1H NMR (nuclear magnetic resonance) spectroscopy, and the relative metabolite levels before and after exercise in the two samples were compared. Subsequently, multivariate data analysis based on the metabolic profiles was performed using orthogonal partial least square discriminant analysis (OPLS-DA), and variable important plots and t-test were used for basic statistical analysis. The stress-induced expression patterns of BCKDK genes in horse muscle-derived cells were examined using quantitative reverse transcription polymerase chain reaction (qPCR) to gain insight into the role of transcript in response to exercise stress. In this study, we found higher concentrations of aspartate, leucine, isoleucine, and lysine in the skeletal muscle of Jeju horses than in Thoroughbred horses. In plasma, compared with Jeju horses, Thoroughbred horses had higher levels of alanine and methionine before exercise; whereas post-exercise, lysine levels were increased. Gene expression analysis revealed a decreased expression level of BCKDK in the post-exercise period in Thoroughbred horses.

Anti-diabetic and Anti-Inflammatory Effects of Water Extract of Ligustrum japonicum Leaves in db/db Mouse (당뇨병 동물모델에서 여정엽(女貞葉) 추출물의 항당뇨 및 항염증 효과)

  • Lee, Yun Jung;Lee, Yun Jae;Yoon, Jung Joo;Lee, So Min;Kim, Hye Yoom;Shin, Sun Ho;Kang, Dae Gill;Lee, Ho Sub
    • The Korea Journal of Herbology
    • /
    • v.27 no.6
    • /
    • pp.107-114
    • /
    • 2012
  • Objectives : In this study, we investigated the anti-diabetic and anti-inflammatory effects of water extract from leaves of Ligustrum japonicum (WLJ) in db/db mouse. Methods : The db/db mice were treated orally with WLJ (300 mg/kg/day) for 10 weeks to examine the long-term effects on hyperglycemia and glomerular tissue as well as biochemical and functional abnormalities in the kidney. Results : WLJ treatment markedly reduced plasma levels of glucose, triglyceride, creatinine, and systolic blood pressure in diabetic db/db mouse. Treatment of WLJ significantly increased plasma level of high density lipoprotein (HDL)-cholesterol. We also found that overexpressions of vascular cellular adhesion molecule (VCAM)-1 and endothelin (ET)-1 were observed in aortic tissue of db/db mouse, whereas, WLJ suppressed both expression of VCAM-1 and ET-1 in aorta. In renal tissue, overexpressions of ICAM-1 and TGF-${\beta}1$ were found in untreated db/db mouse, however, significantly decreased those levels by WLJ treatment. The insulin immunoreactivity of the pancreatic islets remarkably increased in WLJ treated db/db mouse compared with untreated db/db mouse. Taken together, WLJ treatment ameliorated hyperglycemia and hyperlipidemia via improvement of insulin secretion and lipid metabolism, respectively. Furthermore, WLJ treatment also ameliorated hypertension via inhibition of inflammatory process in vascular and renal tissues. Conclusions : Ligustrum japonicum has an anti-diabetic and anti-inflammatory effects in db/db mouse. Thus, these results suggested a beneficial effect of Ligustrum japonicum in treatment with diabetes and diabetic vasculopathy.

Mixture Bombyx mori L. and Liriopis seu Ophiopogonis Tuber effects on T cells in Thymus, Lymph Nodes (누에, 맥문동복합물의 흉선 림프절내 T세포 활성 유도 효능 연구)

  • Kim, Il Gyu;Park, Hae-Jin;Kim, Kyeong Jo;Kim, Soo Hyun;Kim, Min Ju;Lee, Jin A;Roh, Seong-Soo
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.47-52
    • /
    • 2018
  • Objectives : The purpose of this study is to investigate effects on the immune system of Bombyx mori L. and Liriopis seu Ophiopogonis Tuber mixture (BL) in Thymus, Lymph Nodes. Methods : Eight-week-old male Balb/c mice were divided into five groups : Group one included the normal mice (Nor). Positive control group two administrated with red ginseng (RG) 100 mg/kg. Group three administrated with Bombyx mori L. (BX) 300 mg/kg. Group four administrated with Liriopis seu Ophiopogonis Tuber (LP) 300 mg/kg. Group five administrated with the mixture of Bombyx mori L. and Liriopis seu Ophiopogonis Tuber (BL) 300 mg/kg. After 2 weeks administration, mice were sacrified and antigen receptor in Thymus, Lymph Nodes was analyzed by using Fluorescence Activated Cellorter Sorting (FACS). we counted the total of Thymus and Lymph Nodes cells. GOT (glutamlc oxaloacetic transaminase), GPT (glutamlc pyruvic transamlnase) in serum were analyzed after experiment. Results : In Effects of Nor, RG, BX, LP, BL on the ratio of CD4+CD8+, CD4+CD69+ and CD4+CD25+ T cell in Thymus and Lymphnode, BL is higher than other groups except Nor in CD4+, CD4+CD69+, CD4+CD25+ T cell. The number of Thymus and Lymph Nodes increased in BL. In the level of GOT and GPT, BL decreased comparing to others group except Nor. Conclusions : BL may have effect on T cells in Thymus, Lymph Nodes. In addition, Bombyx mori could be immune functional material with others herb materials.

Inhibitory Effect of Beet Extract on Cancer Cell Proliferation (비트 추출물의 암세포 증식 저해 효과)

  • Lee, Jae-Hyeok;Park, Jeong-Sook
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.2
    • /
    • pp.257-262
    • /
    • 2022
  • The purpose of this study was to examine the inhibition of human cancer cell proliferation by using various concentrations of Beet Extract containing various bioactive ingredients. The six cancer cell lines used in the experiment were prostate cancer cells DU-145, lung cancer cells A549, breast cancer cells MCF-7, cervical cancer cells HeLa, liver cancer cells SNU-182, and biliary tract cancer cells SNU-1196. Human-derived cancer cell lines were used. The inhibition of cancer cell proliferation at various concentrations of Beet Extract was measured by the CCK-8 method. As a result of examining the inhibition of cancer cell proliferation, Beet Extract significantly and concentration-dependently inhibited DU145 of prostate cancer cells at all concentrations, and Lung cancer cells A549 and DU-145 of prostate cancer cells at 100ug/mL and 1000ug/mL, cervical cancer cells HeLa, and liver cancer cells SNU- 182, biliary tract cancer cell SNU-1196 showed significant proliferation inhibition at 1000ug/mL. Experiment result, the cancer cell proliferation inhibitory mechanisms of Beet Extract using various human-derived cancer cell lines can be considered to provide cancer prevention effects and the possibility of developing functional foods.

Antioxidant and Elastase Inhibitory Effects of Equisetum hyemale Extract (속새(Equisetum hyemale) 추출물의 항산화 및 Elastase 저해 효과)

  • Song, Jin Hwa;Song, Hyun Sook;Lee, Geo Lyong
    • Journal of Naturopathy
    • /
    • v.10 no.2
    • /
    • pp.86-92
    • /
    • 2021
  • Background: The presence of antioxidants was not confirmed in the medicinal plant Equisetum hyamale grass. Purposes: This study was to determine the antioxidant and elastase inhibition effects of extracts of E. hyemale. Methods: Antioxidant functions of E. hyemale stems and roots were measured and extracted with hot water (HW) and ethyl alcohol (70EOH, 100EOH). Results: The extraction yield of stems was higher in HW extraction than in ethyl alcohol extraction. The polyphenol content was significantly higher in the root extract than in the stem. Total flavonoid content of 70EOH extract was significantly higher in root extract than in stem. The elastase inhibitory function of the extract was 46% in the root and 49% in the stem at 100 ppm of the extract. The ABTS free radical scavenging function was in the order of HW<70EOH<100EOH

P3H4 promotes renal cell carcinoma progression and suppresses antitumor immunity via regulating GDF15-MMP9-PD-L1 axis

  • Tian, Shuo;Huang, Yan;Lai, Dong;Wang, Hanfeng;Du, Songliang;Shen, Donglai;Chen, Weihao;Xuan, Yundong;Lu, Yongliang;Feng, Huayi;Zhang, Xiangyi;Zhao, Wenlei;Wang, Chenfeng;Wang, Tao;Wu, Shengpan;Huang, Qingbo;Niu, Shaoxi;Wang, Baojun;Ma, Xin;Zhang, Xu
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.639-652
    • /
    • 2022
  • The prolyl 3-hydroxylase family member 4 (P3H4), is associated with post-translational modification of fibrillar collagens and aberrantly activated in cancer leading to tumor progression. However, its role in clear cell renal cell carcinoma (ccRCC) is still unknown. Here we reported that P3H4 was highly expressed in renal cancer tissues and significantly positive correlated with poor prognosis. Knockdown of P3H4 inhibited the proliferation, migration and metastasis of renal cancer cells in vitro and in vivo, and also, overexpression of it enhanced the oncogenic process. Mechanistically, P3H4 depletion decreased the levels of GDF15-MMP9 axis and repressed its downstream signaling. Further functional studies revealed that inhibition of GDF15 suppressed renal cancer cell growth and GDF15 recombinant human protein (rhGDF15) supplementation effectively rescued the inhibitory effect induced by P3H4 knockdown. Moreover, decreased levels of MMP9 caused by inhibition of P3H4-GDF15 signaling constrained the expression of PD-L1 and suppression of P3H4 accordingly promoted anti-tumor immunity via stimulating the infiltration of CD4+ and CD8+ T cells in syngeneic mice model. Taken together, our findings firstly demonstrated that P3H4 promotes ccRCC progression by activating GDF15-MMP9-PD-L1 axis and targeting P3H4-GDF15-MMP9 signaling pathway can be a novel strategy of controlling ccRCC malignancy.

MMP-1 and PIP Expressions from Ethanol Extract of Hydnocarpus anthelmintica Pierre in Human Fibroblast Cells (사람유래 섬유아세포에서 대풍자 에탄올 추출물의 MMP-1과 PIP의 발현에 대한 연구)

  • Choi, Eun-Young;Jang, Young-Ah;Ki, Se-Gie
    • Journal of Life Science
    • /
    • v.32 no.12
    • /
    • pp.938-946
    • /
    • 2022
  • This study aims to evaluate the effects of antioxidant activities, protein and mRNA expressions of matrix metalloproteinase (MMP) -1 and procollagen type I C-peptide (PIP) in 70% ethanol extract from Hydnocarpus anthelmintica Pierre (HE). DPPH and ABTS+ radicals scavenging assays were measured for antioxidant activities and HE had 73.5% and 74.4% of scavenging activities at 1,000 ㎍/ml concentration, respectively. And we investigated the inhibition of collagenase by HE, and the result was a 78.8% inhibition effect on concentrations of 1,000 ㎍/ml. In addition, an MTT assay was performed to confirm the toxicity of the CCD-986sk fibroblasts to the HE, and as a result, the cell viability rate was about 91.7% at a concentration of 50 ㎍/ml or less, and subsequent cell experiments were performed at a concentration of 50 ㎍/ml or less. We treated the cells with UVB (20 mJ/cm2) for stimulation, treated HE at various concentrations, and performed ELISA tests and RT-PCR experiments. And HE increased the PIP and mRNA in a dose-dependent manner and showed an expression rate of about 64.2% and 83.4%, respectively, at a concentration of 50 ㎍/ml compared with Cont (50.3% and 45.8%, respectively). And HE suppressed the MMP-1 protein and mRNA in a dose-dependent manner and showed a low expression rate of about 48.7% and 35.9%, respectively, at a concentration of 50 ㎍/ml. These results can be applied to developing anti-wrinkle materials for functional food and cosmetics with HE.

DMSO Improves Motor Function and Survival in the Transgenic SOD1-G93AMouse Model of Amyotrophic Lateral Sclerosis (DMSO 투여된 근위축성 측삭경화증 SOD1-G93A 형질 변환 마우스 모델에서의 근육 기능과 생존 기간 증가 효과)

  • Park, Kyung-Ho;Kim, Yeon-Gyeong;Park, Hyun Woo;Lee, Hee Young;Lee, Jeong Hoon;Patrick, Sweeney;Park, Larry Chong;Park, Jin-Kyu
    • Journal of Life Science
    • /
    • v.32 no.8
    • /
    • pp.611-621
    • /
    • 2022
  • Dimethyl sulfoxide (DMSO) is commonly used as control or vehicle solvent in preclinical research of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) due to its ability to dissolve lipophilic compounds and cross the blood brain barrier. However, the biochemical effects of DMSO on the outcomes of preclinical research are often overlooked. In the present study, we investigated whether the long-term oral administration of 5% DMSO affects the neurological, functional, and histological disease phenotype of the copper/zinc superoxide dismutase glycine 93 to alanine mutation (SOD1-G93A) mouse model of amyotrophic lateral sclerosis. SOD1-G93A transgenic mice showed shortened survival time and reduced motor function. We found that administration with DMSO led to increased mean survival time, reduced neurological scores, and improved motor performance tested using the rotarod and grip strength tests. On the other hand, DMSO treatment did not attenuate motor neuron loss in the spinal cord and denervation of neuromuscular junctions in the skeletal muscle. These results suggest that DMSO administration could improve the quality of life of the SOD1-G93A mouse model of ALS without affecting motor neuron denervation. In conclusion, the use of DMSO as control or vehicle solvent in preclinical research may affect the behavioral outcomes in the SOD1-G93A mouse model. The effect of the vehicle should be thoroughly considered when interpreting therapeutic efficacy of candidate drugs in preclinical research.