Browse > Article
http://dx.doi.org/10.5352/JLS.2022.32.8.611

DMSO Improves Motor Function and Survival in the Transgenic SOD1-G93AMouse Model of Amyotrophic Lateral Sclerosis  

Park, Kyung-Ho (Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University)
Kim, Yeon-Gyeong (Naason Science, Inc.)
Park, Hyun Woo (Naason Science, Inc.)
Lee, Hee Young (Naason Science, Inc.)
Lee, Jeong Hoon (Naason Science, Inc.)
Patrick, Sweeney (Naason Science, Inc.)
Park, Larry Chong (Naason Science, Inc.)
Park, Jin-Kyu (Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University)
Publication Information
Journal of Life Science / v.32, no.8, 2022 , pp. 611-621 More about this Journal
Abstract
Dimethyl sulfoxide (DMSO) is commonly used as control or vehicle solvent in preclinical research of neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) due to its ability to dissolve lipophilic compounds and cross the blood brain barrier. However, the biochemical effects of DMSO on the outcomes of preclinical research are often overlooked. In the present study, we investigated whether the long-term oral administration of 5% DMSO affects the neurological, functional, and histological disease phenotype of the copper/zinc superoxide dismutase glycine 93 to alanine mutation (SOD1-G93A) mouse model of amyotrophic lateral sclerosis. SOD1-G93A transgenic mice showed shortened survival time and reduced motor function. We found that administration with DMSO led to increased mean survival time, reduced neurological scores, and improved motor performance tested using the rotarod and grip strength tests. On the other hand, DMSO treatment did not attenuate motor neuron loss in the spinal cord and denervation of neuromuscular junctions in the skeletal muscle. These results suggest that DMSO administration could improve the quality of life of the SOD1-G93A mouse model of ALS without affecting motor neuron denervation. In conclusion, the use of DMSO as control or vehicle solvent in preclinical research may affect the behavioral outcomes in the SOD1-G93A mouse model. The effect of the vehicle should be thoroughly considered when interpreting therapeutic efficacy of candidate drugs in preclinical research.
Keywords
ALS; antioxidant; DMSO; neuroprotection; SOD1-G93A; vehicle;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sanmartin-Suarez, C., Soto-Otero, R., Sanchez-Sellero, I. and Mendez-Alvarez, E. Antioxidant properties of dimethyl sulfoxide and its viability as a solvent in the evaluation of neuroprotective antioxidants. 2011. J. Pharmacol. Toxicol. Methods 63, 209-215.   DOI
2 Scott, S., Kranz, J. E., Cole, J., Lincecum, J. M., Thompson, K., Kelly, N., Bostrom, A., Theodoss, J., Al-Nakhala, B. M., Vieira, F. G., Ramasubbu, J. and Heywood, J. A. 2008. Design, power, and interpretation of studies in the standard murine model of ALS. Amyotroph. Lateral Scler. 9, 4-15.   DOI
3 Panganamala, R. V., Sharma, H. M., Heikkila, R. E., Geer, J. C. and Cornwell, D. G. 1976. Role of hydroxyl radical scavengers dimethyl sulfoxide, alcohols and methional in the inhibition of prostaglandin biosynthesis. Prostaglandins 11, 599-607.   DOI
4 Simmons, Z. 2015. Patient-perceived outcomes and quality of life in ALS. Neurotherapeutics 12, 394-402.   DOI
5 Bond, L., Bernhardt, K., Madria, P., Sorrentino, K., Scelsi, H. and Mitchell, C. S. 2018. A metadata analysis of oxidative stress etiology in preclinical amyotrophic lateral sclerosis: benefits of antioxidant therapy. Front. Neurosci. 12, 10.
6 Ahmeti, K. B., Ajroud-Driss, S., Al-Chalabi, A., Andersen, P. M., Armstrong, J., Birve, A., Blauw, H. M., Brown, R. H., Bruijn, L., Chen, W., Chio, A., Comeau, M. C., Cronin, S., Diekstra, F. P., Soraya Gkazi, A., Glass, J. D., Grab, J. D., Groen, E. J., Haines, J. L., Hardiman, O., Heller, S., Huang, J., Hung. W. Y., ITALSGEN consortium, Jaworski, J. M., Jones, A., Khan, H., Landers, J. E., Langefeld, C. D., Leigh, P. N., Marion, M. C., McLaughlin, R. L., Meininger, V., Melki, J., Miller, J. W., Mora, G., Pericak-Vance, M. A., Rampersaud, E., Robberecht, W., Russell, L. P., Salachas, F., Saris, C. G., Shatunov, A., Shaw, C. E., Siddique, N., Siddique, T., Smith, B. N., Sufit, R., Topp, S., Traynor, B. J., Vance, C., van Damme, P., van den Berg, L. H., van Es, M. A., van Vught, P. W., Veldink, J. H., Yang, Y., Zheng, J. G. and ALSGEN Consortium. 2013. Age of onset of amyotrophic lateral sclerosis is modulated by a locus on 1p34.1. Neurobiol. Aging 34, 357.e7-19.   DOI
7 Authier, N., Dupuis, E., Kwasiborski, A., Eschalier, A. and Coudore, F. 2002. Behavioural assessment of dimethylsulfoxide neurotoxicity in rats. Toxicol. Lett. 132, 117-121.   DOI
8 Bardutzky, J., Meng, X., Bouley, J., Duong, R. Ratan, T. Q. and Fisher, M. 2005. Effects of intravenous dimethyl sulfoxide on ischemia evolution in a rat permanent occlusion model. J. Cereb. Blood Flow Metab. 25, 968-977.   DOI
9 Broadwell, R. D., Salcman, M. and Kaplan, R. S. 1982. Morphologic effect of dimethyl sulfoxide on the blood-brain barrier. Science 217, 164-166.   DOI
10 Cetin, H., Beeson, D., Vincent. A. and Webster, R. 2020. The structure, function, and physiology of the fetal and adult acetylcholine receptor in muscle. Front. Mol. Neurosci. 13.
11 Ikeda, Y. and Long, D. M. 1990. Comparative effects of direct and indirect hydroxyl radical scavengers on traumatic brain oedema. Acta Neurochir. Suppl. 51, 74-76.
12 Chio, A., Hammond, E. R., Mora, G., Bonito, V. and Filippini, G. 2015. Development and evaluation of a clinical staging system for amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 86, 38-44.   DOI
13 Guo Y., Zhang, K., Wang, Q., Li, Z., Yin, Y., Xu, Q., Duan, W. and Li, C. 2011. Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res. 1374, 110-115.   DOI
14 Han, S., Choi, J. R., Shin, K. S. and Kang, S. J. 2012. Resveratrol upregulated heat shock proteins and extended the survival of G93A-SOD1 mice. Brain Res. 1483, 112-117.   DOI
15 Kong, Q., Carothers, S., Chang, Y. and Lin, C-L. G. 2012. The importance of preclinical trial timing - a potential reason for the disconnect between mouse studies and human clinical trials in ALS. CNS Neurosci. Ther. 18, 791-793.   DOI
16 Lou, J. S., Moore, D., Gordon, P. H. and Miller, R. 2010. Correlates of quality of life in ALS: Lessons from the minocycline study. Amyotroph. Lateral Scler. 11, 116-121.   DOI
17 Nasrallah, F. A., Garner, B., Ball, G. E. and Rae, C. 2008. Modulation of brain metabolism by very low concentrations of the commonly used drug delivery vehicle dimethyl sulfoxide (DMSO). J. Neurosci. Res. 86, 208-214.   DOI
18 Heitzer, M., Kaiser, S., Kanagaratnam, M., Zendedel, A., Hartmann, P., Beyer, C. and Johann, S. 2017. Administration of 17β-estradiol improves motoneuron survival and down-regulates inflammasome activation in male SOD1 (G93A) ALS mice. Mol. Neurobiol. 54, 8429-8443.   DOI
19 Varma, R. K., Kaushal, R., Thomas, G. P., Junnarkar, A. Y., Singh, P. P. and Tripathi, R. M. 1987. Evaluation of dimethyl sulfoxide as a solvent in pharmacological experiments. Indian J. Exp. Biol. 25, 758-760.
20 Tintignac, L. A., Brenner, H. R. and Ruegg, M. A. 2015. Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol. Rev. 95, 809-852.   DOI
21 Hartmaier, S. L., Rhodes, T., Cook, S. F., Schlusser, C., Chen, C., Han, S., Zach, N., Murthy V. and Dave, S. 2022. Qualitative measures that assess functional disability and quality of life in ALS. Health Qual. Life Outcomes 20, 12.
22 Goodall, E. F. and Morrison, K. E. 2006. Amyotrophic lateral sclerosis (motor neuron disease): proposed mechanisms and pathways to treatment. Expert Rev. Mol. Med. 8, 1-22.   DOI
23 Gurney, M. E., Fleck, T. J., Himes, C. S., Hall, E. D. 1998. Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 50, 62-66.   DOI
24 Gurney, M. E., Pu, H., Chiu, A. Y., Dal Canto, M. C., Polchow, C. Y., Alexander, D. D., Caliendo, J., Hentati, A., Kwon, Y. W., Deng, H. X., Chen, W., Zhai, P., Sufit, R. L. and Siddique, T. 1994. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science 264, 1772-1775.   DOI
25 Hatzipetros, T., Kidd, J. D., Moreno, A. J., Thompson, K., Gill, A. and Vieira, F. G. 2015. A quick phenotypic neurological scoring system for evaluating disease progression in the SOD1-G93A mouse model of ALS. J. Vis. Exp. 104, e53257.   DOI
26 Hensley, K., Mhatre, M., Mou, S., Pye, Q. N., Stewart, C., West, M. and Williamson, K. S. 2006. On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid. Redox Signal. 8, 2075-2087.   DOI
27 Zhang, X., Li, L., Chen, S., Yang, D., Wang, Y., Zhang, X., Wang, Z. and Le, W. 2011. Rapamycin treatment augments motor neuron degeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Autophagy 7, 412-425.   DOI
28 Agar, J. and Durham, H. 2003. Relevance of oxidative injury in the pathogenesis of motor neuron diseases. Amyotroph. Lateral Scler. 4, 232-242.
29 Huisman, M. H. B., de Jong, S. W., van Doormaal, P. T. C., Weinreich, S. S., Schelhaas, H. J., van der Kooi, A. J., de Visser, M., Veldink, J. H. and van den Berg, L. H. 2011. Population based epidemiology of amyotrophic lateral sclerosis using capture-recapture methodology. J. Neurol. Neurosurg. Psychiatry 82, 1165-1170.   DOI
30 Jacob, S. W. and de la Torre, J. C. 2009. Pharmacology of dimethyl sulfoxide in cardiac and CNS damage. Pharmacol. Rep. 61, 225-235.   DOI
31 Zhang, X., Zhou, W. and Zhang, Y. 2018. Improvements in SOD mimic AEOL-10150, a potent broad-spectrum antioxidant. Mil. Med. Res. 5, 30.
32 Zhao, Z., Fu, J., Li, S. and Li. Z. 2019. Neuroprotective effects of genistein in a SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol. 14, 688-696.   DOI
33 Yoo, Y. E. and Ko, C. P. 2011. Treatment with trichostatin A initiated after disease onset delays disease progression and increases survival in a mouse model of amyotrophic lateral sclerosis. Exp. Neurol. 231, 147-159.   DOI
34 Zhang, J. J., Zhou, Q. M., Chen, S. and Le, W. D. 2018. Repurposing carbamazepine for the treatment of amyotrophic lateral sclerosis in SOD1-G93A mouse model. CNS Neurosci. Ther. 24, 1163-1174.   DOI
35 Barber, S. C., Mead, R. J., Shaw and P. J. 2006. Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim. Biophys. Acta 1762, 1051-1067.   DOI
36 Brink, J. J. and Stein, D. G. 1967. Pemoline levels in brain: enhancement by dimethyl sulfoxide. Science 158, 1479-1480.   DOI
37 Blevins, J. E., Stanley, B. G. and Reidelberger, R. D. 2002. DMSO as a vehicle for central injections: tests with feeding elicited by norepinephrine injected into the paraventricular nucleus. Pharmacol. Biochem. Behav. 71, 277-282.   DOI
38 Bonafede, R., Turano, E., Scambi, I., Busato, A., Bontempi, P., Virla, F., Schiaffino, L., Marzola, P., Bonetti, B. and Mariotti, R. 2020. ASC-exosomes ameliorate the disease progression in SOD1 (G93A) murine model underlining their potential therapeutic use in human ALS. Int. J. Mol. Sci. 21, 3651.
39 Borchelt, D. R., Lee, M. K., Slunt, H. S., Guarnieri, M., Xu, Z. S., Wong, P. C., Brown, R. H. Jr., Price, D. L., Sisodia, S. S. and Cleveland, D. W. 1994. Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA. 91, 8292.
40 Budinich, C. S., Tucker, L. B., Lowe, D., Rosenberger, J. G. and McCabe, J. T. 2013. Short and long-term motor and behavioral effects of diazoxide and dimethyl sulfoxide administration in the mouse after traumatic brain injury. Pharmacol. Biochem. Behav. 108, 66-73.   DOI
41 Cavaletti, G., Oggioni, N., Sala, F., Pezzoni, G., Cavalletti, E., Marmiroli, P., Petruccioli, M. G., Frattola, L. and Tredici, G. 2000. Effect on the peripheral nervous system of systemically administered dimethylsulfoxide in the rat: a neurophysiological and pathological study. Toxicol. Lett. 118, 103-107.   DOI
42 Colucci, M., Maione, F., Bonito, M. C., Piscopo, A., Di Giannuario, A. and Pieretti, S. 2008. New insights of dimethyl sulphoxide effects (DMSO) on experimental in vivo models of nociception and inflammation. Pharmacol. Res. 57, 419-425.   DOI
43 Chang, C. K., Albarillo, M. V. and Schumer, W. 2001. Therapeutic effect of dimethyl sulfoxide on ICAM-1 gene expression and activation of NF-κB and AP-1 in septic rats. J. Surg. Res. 95, 181-187.   DOI
44 Chiarotto, G. B., Cartarozzi, L. P., Perez, M., Biscola, N. P., Spejo, A. B., Gubert, F., Franca Junior, M., Mendez-Otero, R. and de Oliveira, A. L. R. 2019. Tempol improves neuroinflammation and delays motor dysfunction in a mouse model (SOD1G93A) of ALS. J. Neuroinflammation 16, 218.
45 Chiu, A. Y., Zhai, P., Dal Canto, M. C., Peters, T. M., Kwon, Y. W., Prattis, S. M. and Gurney, M. E. 1995. Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Mol. Cell. Neurosci. 6, 349-362.   DOI
46 Clark, J. A., Blizzard, C. A., Breslin, M. C., Yeaman, E. J., Lee, K. M., Chuckowree, J. A. and Dickson, T. C. 2018. Epothilone D accelerates disease progression in the SOD1G 93A mouse model of amyotrophic lateral sclerosis. Neuropathol. Appl. Neurobiol. 44, 590-605.   DOI
47 Clark, J. A., Southam, K. A., Blizzard, C. A., King, A. E. and Dickson, T. C. 2016. Axonal degeneration, distal collateral branching and neuromuscular junction architecture alterations occur prior to symptom onset in the SOD1G93A mouse model of amyotrophic lateral sclerosis. J. Chem. Neuroanat. 76, 35-47.   DOI
48 de la Torre, J. C. 1991. Synergic activity of combined prostacyclin: dimethyl sulfoxide in experimental brain ischemia. Can. J. Physiol. Pharmacol. 69, 191-198.   DOI
49 di Giorgio, A. M., Hou, Y., Zhao, X., Zhang, B., Lyeth, B. G. and Russell, M. J. 2008. Dimethyl sulfoxide provides neuroprotection in a traumatic brain injury model. Restor. Neurol. Neurosci. 26, 501-507.
50 Deng, H. X., Hentati, A., Tainer, J. A., Iqbal, Z., Cayabyab, A., Hung, W. Y., Getzoff, E. D., Hu, P., Herzfeldt, B. and Roos, R. P. 1993. Amyotrophic lateral sclerosis and structural defects in Cu, Zn superoxide dismutase. Science 261, 1047-1051.   DOI
51 Dong, Q., Zhu. J., Liu, S., Yu, X. and Liu, R. 2018. An oligomer-specific antibody improved motor function and attenuated neuropathology in the SOD1-G93A transgenic mouse model of ALS. Int. Immunopharmacol. 65, 413-421.   DOI
52 Farkas, E., Institoris, A., Domoki, F., Mihaly, A., Luiten, P. G. M. and Bari, F. 2004. Diazoxide and dimethyl sulphoxide prevent cerebral hypoperfusion-related learning dysfunction and brain damage after carotid artery occlusion. Brain Res. 1008, 252-260.   DOI
53 Fridovich, I. 1975. Superoxide dismutases. Annu. Rev. Biochem. 44, 147-159.   DOI
54 Gibson, G. E., Zhang, H., Sheu, K. F. R. and Park, L. C. H. 2000. Differential alterations in antioxidant capacity in cells from Alzheimer patients. Biochim. Biophys. Acta 1502, 319-329.   DOI
55 Morrice, J. R., Gregory-Evans, C. Y. and Shaw, C. A. 2018. Animal models of amyotrophic lateral sclerosis: a comparison of model validity. Neural Regen. Res. 13, 2050-2054.   DOI
56 Mulder, D. W., Kurland, L. T., Offord, K. P. and Beard, C. M. 1986. Familial adult motor neuron disease: amyotrophic lateral sclerosis. Neurology 36, 511-517.   DOI
57 Yim, M. B., Kang, J. H., Yim, H. S., Kwak, H. S., Chock, P. B. and Stadtman, E. R. 1996. A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant: An enhancement of free radical formation due to a decrease in Km for hydrogen peroxide. Proc. Natl. Acad. Sci. USA. 93, 5709-5714.   DOI
58 Nagano, S., Ogawa, Y., Yanagihara and T., Sakoda, S. 1999. Benefit of a combined treatment with trientine and ascorbate in familial amyotrophic lateral sclerosis model mice. Neurosci. Lett. 265, 159-162.   DOI
59 Vinsant, S., Mansfield, C., Jimenez-Moreno, R., Moore, V. D. G., Yoshikawa, M., Hampton, T. G., Prevette, D., Caress, J., Oppenheim, R. W. and Milligan, C. 2013. Characterization of early pathogenesis in the SOD1G93A mouse model of ALS: part I, background and methods. Brain Behav. 3, 335-350.   DOI
60 Weishaupt, J. H., Bartels, C., Polking, E., Dietrich, J., Rohde, G., Poeggeler, B., Mertens, N., Sperling, S., Bohn, M., Huther, G., Schneider, A., Bach, A., Siren, A. L., Hardeland, R., Bahr, M., Nave, K. A. and Ehrenreich, H. 2006. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res. 41, 313-323.   DOI
61 Miquel, E., Cassina, A., Martinez-Palma, L., Souza, J. M., Bolatto, C., Rodriguez-Bottero, S., Logan, A., Smith, R. A. J., Murphy, M. P., Barbeito, L., Radi, R. and Cassina, P. 2014. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic. Biol. Med. 70, 204-213.   DOI
62 Jung, C., Rong, Y., Doctrow, S., Baudry, M., Malfroy, B. and Xu, Z. 2001. Synthetic superoxide dismutase/catalase mimetics reduce oxidative stress and prolong survival in a mouse amyotrophic lateral sclerosis model. Neurosci. Lett. 304, 157-160.   DOI
63 Markvartova, V., Cendelin, J. and Vozeh, F. 2013. Effect of dimethyl sulfoxide in cerebellar mutant Lurcher mice. Neurosci. Lett. 543, 142-145.   DOI
64 Lin, G. J., Wu, C. H., Yu, C. C., Lin, J. R., Liu, X. D., Chen, Y. W., Chang, H. M., Hong, Z. J., Cheng, C. P., Sytwu, H. K. and Huang, S. H. 2019. Adoptive transfer of DMSO-induced regulatory T cells exhibits a similar preventive effect compared to an in vivo DMSO treatment for chemical-induced experimental encapsulating peritoneal sclerosis in mice. Toxicol. Appl. Pharmacol. 378, 114641.
65 Liu, K. X., Edwards, B., Lee, S., Finelli, M. J., Davies, B., Davies, K. E. and Oliver, P. L. 2015. Neuron-specific antioxidant OXR1 extends survival of a mouse model of amyotrophic lateral sclerosis. Brain 138, 1167-1181.   DOI
66 Mahoney, D. J., Kaczor, J. J., Bourgeois, J., Yasuda, N. and Tarnopolsky, M. A. 2006. Oxidative stress and antioxidant enzyme upregulation in SOD1-G93A mouse skeletal muscle. Muscle Nerve 33, 809-816.   DOI
67 Matias, M., Silvestre, S., Falcao, A. and Alves, G. 2018. Considerations and pitfalls in selecting the drug vehicles for evaluation of new drug candidates: focus on in vivo pharmaco-toxicological assays based on the rotarod performance test. J. Pharm. Pharm. Sci. 21, 110-118.   DOI
68 Mead, R. J., Higginbottom, A., Allen, S. P., Kirby. J., Bennett, E., Barber, S. C., Heath, P. R., Coluccia, A., Patel, N., Gardner, I., Brancale, A., Grierson, A. J. and Shaw, P. J. 2013. S[+] Apomorphine is a CNS penetrating activator of the Nrf2-ARE pathway with activity in mouse and patient fibroblast models of amyotrophic lateral sclerosis. Free Radic. Biol. Med. 61, 438-452.   DOI
69 Petrov, D., Mansfield, C., Moussy, A. and Hermine, O. 2017. ALS clinical trials review: 20 years of failure. Are we any closer to registering a new treatment? Front. Aging Neurosci. 9, 68.
70 Ohta, Y., Nomura, E., Shang, J., Feng, T., Huang, Y., Liu, X., Shi, X., Nakano, Y., Hishikawa, N., Sato, K., Takemoto, M., Yamashita and T. and Abe, K. 2019. Enhanced oxidative stress and the treatment by edaravone in mice model of amyotrophic lateral sclerosis. J. Neurosci. Res. 97, 607-619.   DOI
71 Rosen, D. R., Siddique, T., Patterson, D., Figlewicz, D. A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O'Regan, J. P. and Deng, H. X. 1993. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59-62.   DOI
72 Sala, G., Arosio, A., Conti, E., Beretta, S., Lunetta, C., Riva, N., Ferrarese and C., Tremolizzo, L. 2019. Riluzole selective antioxidant effects in cell models expressing amyotrophic lateral sclerosis endophenotypes. Clin. Psychopharmacol. Neurosci. 17, 438-442.   DOI