DOI QR코드

DOI QR Code

Anti-diabetic and Anti-Inflammatory Effects of Water Extract of Ligustrum japonicum Leaves in db/db Mouse

당뇨병 동물모델에서 여정엽(女貞葉) 추출물의 항당뇨 및 항염증 효과

  • Lee, Yun Jung (College of Oriental Medicine, Wonkwang University) ;
  • Lee, Yun Jae (Wonkwang University Oriental Jeonju Medicine Hospital) ;
  • Yoon, Jung Joo (College of Oriental Medicine, Wonkwang University) ;
  • Lee, So Min (College of Oriental Medicine, Wonkwang University) ;
  • Kim, Hye Yoom (College of Oriental Medicine, Wonkwang University) ;
  • Shin, Sun Ho (Wonkwang University Oriental Jeonju Medicine Hospital) ;
  • Kang, Dae Gill (College of Oriental Medicine, Wonkwang University) ;
  • Lee, Ho Sub (College of Oriental Medicine, Wonkwang University)
  • 이윤정 (원광대학교 한의과대학 생리학교실) ;
  • 이윤재 (원광대학교 한의과대학 전주한방병원) ;
  • 윤정주 (원광대학교 한의과대학 생리학교실) ;
  • 이소민 (원광대학교 한의과대학 생리학교실) ;
  • 김혜윰 (원광대학교 한의과대학 생리학교실) ;
  • 신선호 (원광대학교 한의과대학 전주한방병원) ;
  • 강대길 (원광대학교 한의과대학 생리학교실) ;
  • 이호섭 (원광대학교 한의과대학 생리학교실)
  • Received : 2012.09.03
  • Accepted : 2012.11.07
  • Published : 2012.11.30

Abstract

Objectives : In this study, we investigated the anti-diabetic and anti-inflammatory effects of water extract from leaves of Ligustrum japonicum (WLJ) in db/db mouse. Methods : The db/db mice were treated orally with WLJ (300 mg/kg/day) for 10 weeks to examine the long-term effects on hyperglycemia and glomerular tissue as well as biochemical and functional abnormalities in the kidney. Results : WLJ treatment markedly reduced plasma levels of glucose, triglyceride, creatinine, and systolic blood pressure in diabetic db/db mouse. Treatment of WLJ significantly increased plasma level of high density lipoprotein (HDL)-cholesterol. We also found that overexpressions of vascular cellular adhesion molecule (VCAM)-1 and endothelin (ET)-1 were observed in aortic tissue of db/db mouse, whereas, WLJ suppressed both expression of VCAM-1 and ET-1 in aorta. In renal tissue, overexpressions of ICAM-1 and TGF-${\beta}1$ were found in untreated db/db mouse, however, significantly decreased those levels by WLJ treatment. The insulin immunoreactivity of the pancreatic islets remarkably increased in WLJ treated db/db mouse compared with untreated db/db mouse. Taken together, WLJ treatment ameliorated hyperglycemia and hyperlipidemia via improvement of insulin secretion and lipid metabolism, respectively. Furthermore, WLJ treatment also ameliorated hypertension via inhibition of inflammatory process in vascular and renal tissues. Conclusions : Ligustrum japonicum has an anti-diabetic and anti-inflammatory effects in db/db mouse. Thus, these results suggested a beneficial effect of Ligustrum japonicum in treatment with diabetes and diabetic vasculopathy.

Keywords

References

  1. Holman RR, Paul SK, Bethel MA, Matthew DR, Neil HA. 10 year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008 ; 359(15) : 1557-89.
  2. Lopes-Virella MF, Virella G. Immune mechanisms of atherosclerosis in diabetes mellitus. Diabetes. 1992 ; 41(2) : 86-91. https://doi.org/10.2337/diab.41.2.S86
  3. Quagliaro L, Piconi L, Assaloni R, Da Ros R, Maier A, Zuodar G, Ceriello A. Intermittent high glucose enhances ICAM-1, VCAM-1 and E-selectin expression in human umbilical vein endothelial cells in culture: The distinct role of protein kinase C and mitochondrial superoxide production. Atherosclerosis. 2005 ; 183 : 259-67. https://doi.org/10.1016/j.atherosclerosis.2005.03.015
  4. Jeong BS, Shin MK. Dohaehyangyak(crude drug) an unabridged dictionary. Seoul : Youngrimsa. 1990 : 977-8.
  5. Kim CM. Kangsoshinuihakwon pyun. Dictionary of Traditional Chinese Materia Medics. Seoul : A book concern jeongdam. 1998 : 3782-3.
  6. Hea ZD, Donga H, Xua HX, Yea WC, Sunb HD, and Paul PH. Secoiridoid constituents from the fruits of Ligustrum lucidum. phytochemistry. 2001 ; 56(4) : 327. https://doi.org/10.1016/S0031-9422(00)00406-4
  7. Kim YJ, Lee YR, Cheon JW, Lee HS. Anti-Aging Effect of Ligustrum japonicum Extract in the Human Fibroblast Cells. J Soc Cosmet Sci Korea. 2010 ; 36(4) : 295-301
  8. Lee YJ, Choi DH, Kim EJ, Kim HY, Kwon TO, Kang DG, Lee HS. Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in rats fed an atherogenic diet. Am J Chin Med. 2011 ; 39(1) : 39-52. https://doi.org/10.1142/S0192415X11008634
  9. Reaven GM. Non-insulin-dependent diabetes mellitus, abnormal lipoprotein metabolism, and atherosclerosis. Metabolism. 1987 ; 36 : 1-8.
  10. Kissebah AH, Alfarsi S, Evans DJ, Adams PW. Integrated regulation of very low density lipoprotein, triglyceride and apolipoprotein-B kinetics in non-insulin-depentent diabetes mellitus. Diabetes. 1982 ; 31 : 217-25. https://doi.org/10.2337/diabetes.31.3.217
  11. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998 ; 14(4) : 263-83. https://doi.org/10.1002/(SICI)1099-0895(199812)14:4<263::AID-DMR233>3.0.CO;2-C
  12. Kim CH, Youk SU. Coloured resources woody plants. Seoul : AcademyBook. 1993 : 438-40.
  13. Eisenbarth GS. Type I diabetes mellitus: A chronic autoimmune disease. N Engl J Med. 1986 ; 314(21) : 1360-8. https://doi.org/10.1056/NEJM198605223142106
  14. Baek SH. Prevention of type 2 diabetes. Medical Postgraduates. 2007 ; 3 : 128-31.
  15. Weigle DS, Kuijper JL. Obesity genes and the regulation of body fat content. Bioessays. 1996 ; 18(11) : 867-74. https://doi.org/10.1002/bies.950181105
  16. Mandrup-Poulsen T. Diabetes. Brit Med J. 1998 ; 316(7139) : 1221-5.
  17. Son HY. Lipid metabolism in diabetes mellitus. J Korean Diabetes Assoc. 1985 ; 9 : 159-64.
  18. Fredric LD. Hyperlipidemia in diabetes mellitus. Diab Metab Rev. 1990 ; 6 : 47-61. https://doi.org/10.1002/dmr.5610060103
  19. Ganda OP. Pathogenesis of macrovascular disease in the human diabetic. Diabetes. 1980 ; 29 : 931-42. https://doi.org/10.2337/diab.29.11.931
  20. Ceriello A. Coagulation activation in diabetes mellitus: The role of hyperglycaemia and therapeutic prospects. Diabetologia. 1993 ; 36 : 1119-25. https://doi.org/10.1007/BF00401055
  21. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000 ; 49 : 1939-45. https://doi.org/10.2337/diabetes.49.11.1939
  22. Schalkwijk CG, Stehouwer CD. Vascular complications in diabetes mellitus: the role of endothelial dysfunction. Clin Sci (Lond). 2005 ; 109 : 143-59.
  23. Singh NP, Puqazhendhi V, Das AK, Prakash A, Aqarwal SK. Clinical and laboratory profile of diabetes in elderly. J Indian Med Assoc. 1999 ; 97(4) : 124-8.
  24. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002 ; 105 : 1135-43. https://doi.org/10.1161/hc0902.104353
  25. Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med. 1999 ; 340(2) : 115-26. https://doi.org/10.1056/NEJM199901143400207
  26. Shimizu Y, Newman W, Tanaka Y, Shaw S. Lymphocyte interactions with endothelial cells. Immunol Today. 1992 ; 13(3) : 106-12. https://doi.org/10.1016/0167-5699(92)90151-V
  27. Jarvisalo MJ, Putto-Laurila A, Jartti L, Lehtimäki T, Solakivi T, Rönnemaa T, Raitakari OT. Carotidartery intima-media thickness in children with type 1 diabetes. Diabetes. 2002 ; 51(2) : 493-8. https://doi.org/10.2337/diabetes.51.2.493
  28. McGill HC Jr, McMahan CA, Zieske AW, Malcom GT, Tracy RE, Strong JP. Effects of nonlipid risk factors on atherosclerosis in youth with a favorable lipoprotein profile. Circulation. 2001 ; 103(11) : 1546-50. https://doi.org/10.1161/01.CIR.103.11.1546
  29. Kolodgie FD, Virmani R, Burke AP, Farb A, Weber DK, Kutys R, Finn AV, Gold K. Pathologic assessment of the vulnerable human coronary plaque. Heart. 2004 ; 90(12) : 1385-91. https://doi.org/10.1136/hrt.2004.041798
  30. Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther. 2007 ; 5(2) : 265-82. https://doi.org/10.1586/14779072.5.2.265
  31. Li G, Sanders JM, Phan ET, Ley K, Sarembock IJ. Arterial macrophages and regenerating endothelial cells express P-selectin in atherosclerosis-prone apolipoprotein E-deficient mice. Am J Pathol. 2005 ; 167(6) : 1511-8. https://doi.org/10.1016/S0002-9440(10)61237-0
  32. Jiang ZY, Lin YW, Clemont A, Feener EP, Hein KD, Igarashi M, Yamauchi T, White MF, King GL. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker (fa/fa) rats. J Clin Invest. 1999 ; 104(4) : 447-57. https://doi.org/10.1172/JCI5971
  33. Saad MJ, Velloso LA, Carvalho CR. Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem J. 1995 ; 310 : 741-4. https://doi.org/10.1042/bj3100741
  34. Haffner SM, Mykkanen L, Festa A, Burke JP, Stern MP. Insulin-resistant pre-diabetic subjects have more atherogenic risk factors than insulin-sensitive pre-diabetic subjects: implications for preventing coronary heart disease during the pre-diabetic state. Circulation. 2000 ; 101(9) : 975-80. https://doi.org/10.1161/01.CIR.101.9.975