• Title/Summary/Keyword: functional coating

Search Result 311, Processing Time 0.03 seconds

Effects of Powder Mixing on the Mechanical Properties of Thermally Sprayed WC-Co-Cr Coating Layers (WC-Co-Cr 용사코팅시 분말의 혼합이 코팅층의 기계적 특성에 미치는 영향)

  • Lee, Chang Woo;Han, Jun Hyun;Shin, Myung Chul;Kwun, S.I.
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.5
    • /
    • pp.290-296
    • /
    • 2009
  • We report on the effects of mixing of powders with various particle sizes on fracture toughness and wear resistance of thermally sprayed WC-10Co-4Cr coating layers fabricated by HVOF (high-velocity oxygen fuel) process. The size and the mixing ratio of powders were changed in order to get high fracture toughness and wear resistance. The mixing of small amount of coarse powders with fine powders resulted in the highest fracture toughness and wear resistance due to the lowest porosity in coating layers.

Effects on the Qualities of Proteolysis to Beef by Non-coating and Coating Protease Treatment

  • Kim, Kwang-Il;Lee, Sang-Yoon;Kim, Soo-Jin;Seo, Jae-Hee;Lee, Joong-Kyu;Shin, Jung-Kue;Cho, Hyung-Yong;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.36 no.1
    • /
    • pp.114-121
    • /
    • 2016
  • This study was performed to improve the techniques used for tenderizing red meat as elderly food. Beef meat was immersed in liposome encapsulated enzyme solution and the effect of protease encapsulation on the beef properties was analyzed. The protease encapsulation properties were analyzed according to the size distribution and enzymatic activity. After enzyme reaction on the beef, the chemical properties of the meat such as pH, water holding capacity, shear rate, lipid oxidation and total volatile basic nitrogen (TVB-N) were analyzed. The pH of the beef increased during the reaction and coating protease (CP) was higher than non-coating protease (NCP). Total color differences were increased remarkably after 36 h and generally, the difference in CP was relatively lower than in NCP. WHC was significantly decreased within 24 h, and no effect from the protease coating was observed. Protease activity was significantly increased within 48 h and no differences in the enzyme coating were observed. The TVB-N value of NCP was increased within 24 h while CP was sustained for up to 36 h. The TVB-N value of protease treated meat increased after 36 h and no effect from the protease coating was detected. Consequently, liposome encapsulated protease was found to have similar properties as non-coated protease. Application of liposome seems to be an interesting option for injecting various functional materials without changing the properties of meat.

Fabrication of functional aluminum surface through anodization mode transition (양극산화 모드 전환을 통한 기능성 알루미늄 표면 연구)

  • Park, Youngju;Jeong, Chanyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.417-424
    • /
    • 2022
  • This research develops an easy-to-use, environmentally friendly method for fabricating functional 1050 aluminum alloy surfaces with excellent corrosion resistance. Functional aluminum surfaces with various nanostructures are fabricated by controlling the experimental conditions of anodizing process. The experiment used a multi-step anodizing process that alternates between two different anodizing modes, mild anodizing (MA) and hard anodizing (HA), together with a pore-widening (PW) process. Among them, the nanostructured surface with a small solid fraction shows superhydrophobicity with a contact angle of more than 170° after water-repellent coating. In addition, the surface with superhydrophobicity is difficult for corrosive substances to penetrate, so the corrosion resistance is greatly improved.

Preparation process of functional particles: III. Preparation of composite particles by rapid expansion of supercritical fluid solutions and release behavior (기능성 미분말의 제조공정에 관한 연구 : III. 초임계 분출법에 의한 복합분체의 합성과 용출특성)

  • ;;;Eiichi Abe
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.55-59
    • /
    • 1999
  • The Rapid Expansion of Supercritical fluid Solutions (RESS) process was applied to particles coating. Microcapsules prepared by spray drying were used as the core particles, and two kinds of paraffin were used as the coating materials. Supercritical $CO_{2}$ solutions of paraffin were expanded through the short nozzle into the bed that was fluidized by air. Extraction temperature and pressure were varied at $50~120^{\circ}C$, $150~200\;kg/\textrm{cm}^2$, respectively. The thickness of theoritical coating layer ws measured, and precipitate coating layer on surface was analyzed by using SEM, FT-IR. The release behaviors of $Mg^{2+}$ ions were inspected by atomic absorbance spectrophtometer.

  • PDF

Characteristics of Environment-friendly Waterborne Coating Agent Applied to Inorganic Adsorbent (무기흡착제가 적용된 친환경 수성 코팅제의 특성 연구)

  • Shin, Jong-Sub;Lee, Jung-Hee;Kwak, Eun-Mi;Yun, Jong-Kuk;Kim, Hyun-Bum
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.622-627
    • /
    • 2012
  • This study focuses on mechanical property enhancement and volatile organic compounds (VOCs) reduction characteristic of environmentally-friendly waterborne coatings. We synthesized a series of organic-inorganic hybrid waterborne polyurethanes by using poly(tetramethylene glycol) 2000, polycarbonate diol 2000, isophorone diisocyanate, dimethylolpropionic acid and titanium dioxide. The study on the effects of the R ratio([NCO]/[OH]) and inorganic contents on environmentally-friendly waterborne coatings showed that the R ratio with more than 1.5 is appropriate due to arrangement of hardsegments. The applied $TiO_2$ on films reduced volatile organic compounds (VOCs).

Removal of Arsenite by Nanocrystalline Mackinawite(FeS)-Coated Alumina (나노크기 매킨나와이트로 코팅된 알루미나에 의한 아비산염의 제거)

  • Lee, Seungyeol;Kang, Jung Chun;Park, Minji;Yang, Kyounghee;Jeong, Hoon Young
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.101-110
    • /
    • 2013
  • Due to the large specific surface area and great reactivity toward environmental contaminants, nanocrystalline mackinawite (FeS) has been widely applied for the remediation of contaminated groundwater and soil. Furthermore, nanocrystalline FeS is rather thermodynamically stable against anoxic corrosion, and its reactivity can be regenerated continuously by the activity of sulfate-reducing bacteria. However, nanocrystalline mackinawite is prone to either spread out along the groundwater flow or cause pore clogging in aquifers by particle aggregation. Accordingly, this mineral should be modified for the application of permeable reactive barriers (PRBs). In this study, coating methods were investigated by which mackinawite nanoparticles were deposited on the surface of alumina or activated alumina. The amount of FeS coating was found to significantly vary with pH, with the highest amount occurring at pH ~6.9 for both minerals. At this pH, the surfaces of mackinawite and alumina (or activated alumina) were oppositely charged, with the resultant electrostatic attraction making the coating highly effective. At this pH, the coating amounts by alumina and activated alumina were 0.038 and 0.114 $mmol{\cdot}FeS/g$, respectively. Under anoxic conditions, arsenite sorption experiments were conducted with uncoated alumina, uncoated activated alumina, and both minerals coated with FeS at the optimal pH for comparison of their reactivity. Uncoated activated alumina showed the higher arsenite removal compared to uncoated alumina. Notably, the arsenite sorption capacity of activated alumina was little changed by the coating with FeS. This might be attributed to the abundance of highly reactive hydroxyl functional groups (${\equiv}$AlOH) on the surface of activated alumina, making the arsenite sorption by the coated FeS unnoticeable. In contrast, the arsenite sorption capacity of alumina was found to increase substantially by the FeS coating. This was due to the consumption of the surface hydroxyl functional groups on the alumina surface and the subsequent occurrence of As(III) sorption by the coated FeS. Alumina, on the surface area basis, has about 8 times higher FeS coating amount and higher As(III) sorption capacity than silica. This study indicates that alumina is a better candidate than silica for the coating of nanocrystalline mackinawite.

Surface Modification of Functional Materials by a Bio-Inspired Poly(norepinephrine) Coating

  • Gang, Seong-Min
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.11a
    • /
    • pp.65-65
    • /
    • 2012
  • 카테콜아민의 일종인 노레피네프린을 이용하면 다양한 물질의 표면을 효과적으로 개질시킬 수 있음이 최근 보고되었다. 단순한 표면 개질뿐만 아니라 OH- 작용기의 도입이 가능하다는 장점을 갖는 노레피네프린 코팅법은 산화그래핀 혹은 흑연과 같은 비활성 표면에까지 성공적으로 적용되었으며, 그 결과 생체 적합성을 갖는 기능성 표면이 개발되었다.

  • PDF

A Study on the Antibacterial and Antifungal Properties of Zeolite/Zinc-polypeptide Coated Polypropylene Film (Zeolite/Zinc-polypeptide를 코팅한 폴리프로필렌필름의 항균 및 항진균 특성에 관한 연구)

  • Lee, Hakrae;Ko, Euisuk;Shim, Woncheol;Kim, Jongseo;Kim, Jaineung
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • This study is for the application of functional antibacterial packaging to fresh food. Zeolite/Zinc-polypeptide was coated on PP film at concentrations of 5%, 10%, and 15%, degree of dispersion was verified through FESEM and FT-IR analysis. In addition, the antibacterial and antifungal properties of the films were analyzed according to the control group and the concentration of coating materials. As a result, the degree of dispersion of coating material was irregular but wide, depending on the concentration of Zeolite/Zinc-polypeptide on the surface of PP film. The antibacterial effect against E. coli was over 99.9%, and the growth of R. oryzae was inhibited about 70%. Therefore, it was confirmed that Zeolite/Zinc-polypeptide had antibacterial and antifungal properties against E. coli and R. oryzae even after coated on PP film. In conclusion, Zeolite/Zinc-polypeptide coating film is expected to be effective in preventing corruption and improving the shelf life of fresh food as a functional packaging material. In order to be applied to various fresh foods in the future, storage experiments are additionally required with temperature and humidity conditions according to fresh foods.

Effects of nitrogen doping on mechanical and tribological properties of thick tetrahedral amorphous carbon (ta-C) coatings (질소 첨가된 ta-C 후막코팅의 기계 및 트라이볼로지적 특성연구)

  • Gang, Yong-Jin;Jang, Yeong-Jun;Kim, Jong-Guk
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.156-156
    • /
    • 2016
  • The effect of nitrogen doping on the mechanical and tribological performance of single-layer tetrahedral amorphous carbon (ta-C:N) coatings of up to $1{\mu}m$ in thickness was investigated using a custom-made filtered cathode vacuum arc (FCVA). The results obtained revealed that the hardness of the coatings decreased from $65{\pm}4.8GPa$ to $25{\pm}2.4GPa$ with increasing nitrogen gas ratio, which indicates that nitrogen doping occurs through substitution in the $sp^2$ phase. Subsequent AES analysis showed that the N/C ratio in the ta-C:N thick-film coatings ranged from 0.03 to 0.29 and increased with the nitrogen flow rate. Variation in the G-peak positions and I(D)/I(G) ratio exhibit a similar trend. It is concluded from these results that micron-thick ta-C:N films have the potential to be used in a wide range of functional coating applications in electronics. To achieve highly conductive and wear-resistant coatings in system components, the friction and wear performances of the coating were investigated. The tribological behavior of the coating was investigated by sliding an SUJ2 ball over the coating in a ball-on-disk tribo-meter. The experimental results revealed that doping using a high nitrogen gas flow rate improved the wear resistance of the coating, while a low flow rate of 0-10 sccm increased the coefficient of friction (CoF) and wear rate through the generation of hematite (${\alpha}-Fe_2O_3$) phases by tribo-chemical reaction. However, the CoF and wear rate dramatically decreased when the nitrogen flow rate was increased to 30-40 sccm, due to the nitrogen inducing phase transformation that produced a graphite-like structure in the coating. The widths of the wear track and wear scar were also observed to decrease with increasing nitrogen flow rate. Moreover, the G-peaks of the wear scar around the SUJ2 ball on the worn surface increased with increasing nitrogen doping.

  • PDF

Development and Analysis of Graphene Oxide Thin Film Coating (산화그래핀 박막 코팅기술 개발 및 특성평가)

  • Cheon, Yeong Ah;Nam, Jin-Su;Son, Kyung Soo;Im, Young Tae;Ahn, Won Kee;Chung, Bong Geun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.5
    • /
    • pp.463-469
    • /
    • 2015
  • In this study, we synthesized graphene oxide and developed novel spin-spray coating technology. The graphene oxide thin film was uniformly coated on amine-functionalized glass surfaces using spin-spray coating technology. We also stacked up to four layers of graphene oxide on glass substrates in a uniform manner. From the results, we infer that this spin-spray coating of graphene oxide thin film could be a powerful tool for various electronic display coating applications.