DOI QR코드

DOI QR Code

Fabrication of functional aluminum surface through anodization mode transition

양극산화 모드 전환을 통한 기능성 알루미늄 표면 연구

  • Park, Youngju (Department of Advanced Materials Engineering, Dong-eui University) ;
  • Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-eui University)
  • Received : 2022.12.14
  • Accepted : 2022.12.20
  • Published : 2022.12.31

Abstract

This research develops an easy-to-use, environmentally friendly method for fabricating functional 1050 aluminum alloy surfaces with excellent corrosion resistance. Functional aluminum surfaces with various nanostructures are fabricated by controlling the experimental conditions of anodizing process. The experiment used a multi-step anodizing process that alternates between two different anodizing modes, mild anodizing (MA) and hard anodizing (HA), together with a pore-widening (PW) process. Among them, the nanostructured surface with a small solid fraction shows superhydrophobicity with a contact angle of more than 170° after water-repellent coating. In addition, the surface with superhydrophobicity is difficult for corrosive substances to penetrate, so the corrosion resistance is greatly improved.

Keywords

Acknowledgement

본 과제(결과물)는 교육부와 한국연구재단의 재원으로 지원을 받아 수행된 3단계 산학연협력 선도대학 육성사업(LINC 3.0)의 연구결과입니다(202202110001).

References

  1. J. R. Davis, Aluminum and aluminum alloys, ASM International, (1993) 3-10.
  2. A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes, J. Membr. Sci., 319 (2008) 192-198. https://doi.org/10.1016/j.memsci.2008.03.044
  3. R. Furneaux, W. R. Rigby, A. P. Davidson, The formation of controlled-porosity membranes from anodically oxidized aluminium, Nature, 337 (1989) 147-149. https://doi.org/10.1038/337147a0
  4. T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Super-water-repellent fractal surfaces, Langmuir, 12 (1996) 2125-2127. https://doi.org/10.1021/la950418o
  5. C. Jeong, C.H. Choi, Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency, ACS Appl. Mater. Interfaces, 4 (2012) 842-848. https://doi.org/10.1021/am201514n
  6. F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans, X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum, Angew. Chem., Int. Ed. 47 (2008) 2466-2469. https://doi.org/10.1002/anie.200704694
  7. L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings Langmuir, 25 (2009) 12444-12448. https://doi.org/10.1021/la902882b
  8. C. Jeong, H. Ji, Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052 aluminum Alloy, materials, 12 (2019) 3231. https://doi.org/10.3390/ma12193231
  9. F. Keller, M. S. Hunter, D. L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc., 100 (1953) 411-419. https://doi.org/10.1149/1.2781142
  10. J. Fahim, S. M. M. Hadavi, H. Ghayour, S. H. Tabrizi, Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy, Wear, 424 (2019) 122-132. https://doi.org/10.1016/j.wear.2019.02.017
  11. C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Air-impregnated nanoporous anodic aluminum oxide layers for enhancing corrosion resistance of aluminum, Langmuir, 31 (2015) 11040-11050. https://doi.org/10.1021/acs.langmuir.5b02392
  12. P. A. Dick, A. Konrath, Y. R. Melo, C. Radtke, L. F. Dick, Aluminum anodizing with simultaneous silanization for increased hydrophobicity and corrosion protection, Applied Surface Science, 593 (2022) 153392. https://doi.org/10.1016/j.apsusc.2022.153392
  13. Y. Wang, W. wang, L. Zhong, J. Wang, Q. Jiang. X. Guo, Super-hydrophobic surface on pure magnesium substrate by wet chemical method, Appl. Surf. Sci., 256 (2010) 3837. https://doi.org/10.1016/j.apsusc.2010.01.037
  14. C. Jeong, A study on functional hydrophobic stainless steel 316L using single-step anodization and a self-assembled monolayer coating to improve corrosion resistance, Coatings, 12 (2022) 395. https://doi.org/10.3390/coatings12030395
  15. C. Jeong, Stevens institute of technology, New Jersey (2013) 132.
  16. E. Puukilainen, T. Rasilainen, M. Suvanto, T. A. Pakkanen, Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures, Langmuir, 23 (2007) 7263-7268. https://doi.org/10.1021/la063588h
  17. K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, U. Gosele, Self-ordering regimes of porous alumina: the 10 porosity rule, Nano letters, 2 (2002) 677-680. https://doi.org/10.1021/nl025537k
  18. Y. J. Park, H. J. Ji, C. Jeong, Development of superhydrophilic 6061 aluminum alloy by stepwise anodization according to pore-widening time. Korean J. Met. Mater., 58 (2020) 97. https://doi.org/10.3365/kjmm.2020.58.2.97
  19. A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion resistance improvement of aluminum under anodizing process, AIP Conf. Proc., 1977 (2018) 020006. https://doi.org/10.1063/1.5042862
  20. Y. Huang, H. Shih, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, C. Chang, F. Mansfeld, Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS), Corros. Sci., 50 (2008) 3569. https://doi.org/10.1016/j.corsci.2008.09.008
  21. L. Benea, N. S. Bogatu, R. Chiriac, Electrochemically obtained Al2O3 nanoporouslayers with increased anticorrosive properties of aluminum alloy, J. Mater. Res. Technol. 17 (2022) 2636. https://doi.org/10.1016/j.jmrt.2022.02.038
  22. A. Rattanasatitkul, S. Prombanpong, P. Tuengsook, An effect of process parameters to anodic thickness in hard anodizing process, Mater. Sci. Forum., 872 (2016) 168. https://doi.org/10.4028/www.scientific.net/msf.872.168
  23. A. Z. Zakaria, K. S. nezhad, T. N. Chakherlou, A. Olad, Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates, Eng. Fract. Mech.,172 (2017) 139-151. https://doi.org/10.1016/j.engfracmech.2017.01.004
  24. J. Y. Oh, E. M. Kim, G. S. Heo, D. H. Kim, D. Lee, H. C. Jeong, D. S. Seo, Superior nanopatterns via adjustable nanoimprint lithography on aluminum oxide in high-K thin films with ultraviolet curable polymer, RSC Adv., 12 (2022) 88-93. https://doi.org/10.1039/D1RA08425A
  25. H. Ji, C. Jeong, Fabrication of superhydrophobic aluminum alloy surface with hierarchical pore nanostructure for anti-corrosion, Corros. Sci. Tech., 18 (2019) 228-231. https://doi.org/10.14773/cst.2019.18.6.228
  26. C. Jeong, C. H. Choi, Three-dimensional (3D) anodic aluminum surfaces by modulating electrochemical method, J. Korean Inst. Surf. Eng., 50 (2017) 427-431. https://doi.org/10.5695/JKISE.2017.50.6.427
  27. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. Res., 28 (1936) 988-994. https://doi.org/10.1021/ie00091a016
  28. A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, J. Chem. Soc. Faraday Trans. 40 (1944) 546-551. https://doi.org/10.1039/tf9444000546
  29. Wang, D. Zhang, Z. Lu, S. Sun, Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion, ACS Appl. Mater. Interfaces, 8 (2016) 1120-1127. https://doi.org/10.1021/acsami.5b08452
  30. P. Vengatesh, M. A. Kulandainathan, Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance, ACS Appl. Mater. Interfaces, 7 (2015) 1516-1526. https://doi.org/10.1021/am506568v