Browse > Article
http://dx.doi.org/10.5695/JSSE.2022.55.6.417

Fabrication of functional aluminum surface through anodization mode transition  

Park, Youngju (Department of Advanced Materials Engineering, Dong-eui University)
Jeong, Chanyoung (Department of Advanced Materials Engineering, Dong-eui University)
Publication Information
Journal of the Korean institute of surface engineering / v.55, no.6, 2022 , pp. 417-424 More about this Journal
Abstract
This research develops an easy-to-use, environmentally friendly method for fabricating functional 1050 aluminum alloy surfaces with excellent corrosion resistance. Functional aluminum surfaces with various nanostructures are fabricated by controlling the experimental conditions of anodizing process. The experiment used a multi-step anodizing process that alternates between two different anodizing modes, mild anodizing (MA) and hard anodizing (HA), together with a pore-widening (PW) process. Among them, the nanostructured surface with a small solid fraction shows superhydrophobicity with a contact angle of more than 170° after water-repellent coating. In addition, the surface with superhydrophobicity is difficult for corrosive substances to penetrate, so the corrosion resistance is greatly improved.
Keywords
Pulse Anodizing; Functional Hydrophilic/Hydrophobic Surfaces; Aluminum 1050 Alloy; Corrosion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 A. S. Darmawan, T. W. B. Riyadi, A. Hamid, B. W. Febriantoko, B. S. Putra, Corrosion resistance improvement of aluminum under anodizing process, AIP Conf. Proc., 1977 (2018) 020006.   DOI
2 Y. Huang, H. Shih, H. Huang, J. Daugherty, S. Wu, S. Ramanathan, C. Chang, F. Mansfeld, Evaluation of the corrosion resistance of anodized aluminum 6061 using electrochemical impedance spectroscopy (EIS), Corros. Sci., 50 (2008) 3569.   DOI
3 A. Rattanasatitkul, S. Prombanpong, P. Tuengsook, An effect of process parameters to anodic thickness in hard anodizing process, Mater. Sci. Forum., 872 (2016) 168.   DOI
4 K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, U. Gosele, Self-ordering regimes of porous alumina: the 10 porosity rule, Nano letters, 2 (2002) 677-680.   DOI
5 R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. Res., 28 (1936) 988-994.   DOI
6 A. Z. Zakaria, K. S. nezhad, T. N. Chakherlou, A. Olad, Effects of aluminum surface treatments on the interfacial fracture toughness of carbon-fiber aluminum laminates, Eng. Fract. Mech.,172 (2017) 139-151.   DOI
7 J. Y. Oh, E. M. Kim, G. S. Heo, D. H. Kim, D. Lee, H. C. Jeong, D. S. Seo, Superior nanopatterns via adjustable nanoimprint lithography on aluminum oxide in high-K thin films with ultraviolet curable polymer, RSC Adv., 12 (2022) 88-93.   DOI
8 H. Ji, C. Jeong, Fabrication of superhydrophobic aluminum alloy surface with hierarchical pore nanostructure for anti-corrosion, Corros. Sci. Tech., 18 (2019) 228-231.   DOI
9 J. R. Davis, Aluminum and aluminum alloys, ASM International, (1993) 3-10.
10 C. Jeong, C. H. Choi, Three-dimensional (3D) anodic aluminum surfaces by modulating electrochemical method, J. Korean Inst. Surf. Eng., 50 (2017) 427-431.   DOI
11 A. B. D. Cassie, S. Baxter, Wettability of porous surfaces, J. Chem. Soc. Faraday Trans. 40 (1944) 546-551.   DOI
12 Wang, D. Zhang, Z. Lu, S. Sun, Fabrication of slippery lubricant-infused porous surface for inhibition of microbially influenced corrosion, ACS Appl. Mater. Interfaces, 8 (2016) 1120-1127.   DOI
13 J. Fahim, S. M. M. Hadavi, H. Ghayour, S. H. Tabrizi, Cavitation erosion behavior of super-hydrophobic coatings on Al5083 marine aluminum alloy, Wear, 424 (2019) 122-132.   DOI
14 R. Furneaux, W. R. Rigby, A. P. Davidson, The formation of controlled-porosity membranes from anodically oxidized aluminium, Nature, 337 (1989) 147-149.   DOI
15 T. Onda, S. Shibuichi, N. Satoh, K. Tsujii, Super-water-repellent fractal surfaces, Langmuir, 12 (1996) 2125-2127.   DOI
16 F. Zhang, L. Zhao, H. Chen, S. Xu, D. G. Evans, X. Duan, Corrosion resistance of superhydrophobic layered double hydroxide films on aluminum, Angew. Chem., Int. Ed. 47 (2008) 2466-2469.   DOI
17 P. Vengatesh, M. A. Kulandainathan, Hierarchically ordered self-lubricating superhydrophobic anodized aluminum surfaces with enhanced corrosion resistance, ACS Appl. Mater. Interfaces, 7 (2015) 1516-1526.   DOI
18 L. Benea, N. S. Bogatu, R. Chiriac, Electrochemically obtained Al2O3 nanoporouslayers with increased anticorrosive properties of aluminum alloy, J. Mater. Res. Technol. 17 (2022) 2636.   DOI
19 L. Cao, A. K. Jones, V. K. Sikka, J. Wu, D. Gao, Anti-icing superhydrophobic coatings Langmuir, 25 (2009) 12444-12448.   DOI
20 F. Keller, M. S. Hunter, D. L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc., 100 (1953) 411-419.   DOI
21 P. A. Dick, A. Konrath, Y. R. Melo, C. Radtke, L. F. Dick, Aluminum anodizing with simultaneous silanization for increased hydrophobicity and corrosion protection, Applied Surface Science, 593 (2022) 153392.   DOI
22 Y. Wang, W. wang, L. Zhong, J. Wang, Q. Jiang. X. Guo, Super-hydrophobic surface on pure magnesium substrate by wet chemical method, Appl. Surf. Sci., 256 (2010) 3837.   DOI
23 C. Jeong, Stevens institute of technology, New Jersey (2013) 132.
24 C. Jeong, J. Lee, K. Sheppard, C. H. Choi, Air-impregnated nanoporous anodic aluminum oxide layers for enhancing corrosion resistance of aluminum, Langmuir, 31 (2015) 11040-11050.   DOI
25 A. Belwalkar, E. Grasing, W. Van Geertruyden, Z. Huang, W. Z. Misiolek, Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes, J. Membr. Sci., 319 (2008) 192-198.   DOI
26 C. Jeong, C.H. Choi, Single-step direct fabrication of pillar-on-pore hybrid nanostructures in anodizing aluminum for superior superhydrophobic efficiency, ACS Appl. Mater. Interfaces, 4 (2012) 842-848.   DOI
27 C. Jeong, H. Ji, Systematic control of anodic aluminum oxide nanostructures for enhancing the superhydrophobicity of 5052 aluminum Alloy, materials, 12 (2019) 3231.   DOI
28 C. Jeong, A study on functional hydrophobic stainless steel 316L using single-step anodization and a self-assembled monolayer coating to improve corrosion resistance, Coatings, 12 (2022) 395.   DOI
29 E. Puukilainen, T. Rasilainen, M. Suvanto, T. A. Pakkanen, Superhydrophobic polyolefin surfaces: controlled micro- and nanostructures, Langmuir, 23 (2007) 7263-7268.   DOI
30 Y. J. Park, H. J. Ji, C. Jeong, Development of superhydrophilic 6061 aluminum alloy by stepwise anodization according to pore-widening time. Korean J. Met. Mater., 58 (2020) 97.   DOI