• 제목/요약/키워드: functional coating

검색결과 311건 처리시간 0.026초

Polysulfone/nanocomposites mixed matrix ultrafiltration membrane for the recovery of Maillard reaction products

  • Basu, Subhankar;Mukherjee, Sanghamitra;Balakrishnan, Malini;Deepthi, M.V.;Sailaja, R.R.N.
    • Membrane and Water Treatment
    • /
    • 제9권2호
    • /
    • pp.105-113
    • /
    • 2018
  • Maillard reaction products like melanoidins present in industrial fermentation wastewaters are complex compounds with various functional properties. In this work, novel ultrafiltration (UF) mixed matrix membrane (MMM) composed of polysulfone (PSF) and nanocomposites was prepared through a phase inversion process for the recovery of melanoidins. Nanocomposites were prepared with acid functionalized multiwalled carbon nanotubes (MWCNTs) as the reinforcing filler for chitosan-thermoplastic starch blend. Higher nanocomposites content in the PSF matrix reduced the membrane permeability and melanoidins retention indicating tighter membrane with surface defects. The membrane surface defects could be sealed with dilute polyvinyl alcohol (PVA) solution. The best performing membrane (1% nanocomposites in 18% PSF membrane sealed with 0.25% PVA coating) resulted in uniform melanoidins retention of 98% and permeability of 3.6 L/m2 h bar over a period of 8h. This demonstrates a low fouling PSF membrane for high melanoidins recovery.

내식성 향상을 위한 기능성 타이타늄 표면 개질 (Surface Modification of Functional Titanium Oxide to Improve Corrosion Resistance)

  • 박영주;정찬영
    • Corrosion Science and Technology
    • /
    • 제20권5호
    • /
    • pp.256-265
    • /
    • 2021
  • Titanium is applied in various industries due to its valuable properties and abundant reserves. Generally, if a highly uniform oxide structure and a high-density oxide film is formed on the surface through anodization treatment, the utility value such as color appearance and corrosion inhibition efficiency is further increased. The objective of this study was to determine improvement of water-repellent property by controlling titanium oxide parameters such as pore size and inter-pore distance to improve corrosion resistance. Oxide film structures of different shapes were prepared by controlling the anodization processing time and voltage. These oxide structures were then analyzed using a Field Emission Scanning Electron Microscope (FE-SEM). Afterwards, a Self-Assembled Monolayer (SAM) coating was performed for the oxide structure. The contact angle was measured to determine the relationship between the shape of the oxide film and the water-repellency. The smaller the solid fraction of the surface, the higher the water-repellent effect. The surface with excellent hydrophobic properties showed improved corrosion resistance. Such water-repellent surface has various applications. It is not only useful for corrosion prevention, but also useful for self-cleaning. In addition, a hydrophobic titanium may open up a new world of biomaterials to remove bacteria from the surface.

Properties of Water-Soluble Propolis Made with Honey

  • Woo, Soon Ok;Han, Sangmi;Hong, Inpyo
    • 한국양봉학회지
    • /
    • 제32권4호
    • /
    • pp.391-394
    • /
    • 2017
  • Propolis is made by bees collecting protective material or essence of plants and mixing with saliva and enzymes produced by the salivary glands. It is used to repair the inside of the honeycomb, keep it sterile, and adjust the temperature and humidity. Propolis is a natural antibiotic substance that it is used to make a clean room by coating the cell before the queen bee lay eggs, and preventing the bacteria from invading by using with wax when sealing the nursery room. Propolis extract is a health functional food with antioxidant and oral antimicrobial effects. In order to use propolis in food, its active ingredients are extracted with ethanol. Water-soluble propolis was prepared by mixing and stirring honey and ethanol extracted propolis (EEP) solution. When 1kg of honey and 100ml of ethanol extracted propolis solution were mixed and stirred, the total flavonoid content of water-soluble propolis was $6.6{\pm}1.1mg/10g$, and the free radical scavenging effects of water-soluble propolis were 54 to 74%.

Microscopic damping mechanism of micro-porous metal films

  • Du, Guangyu;Tan, Zhen;Li, Zhuolong;Liu, Kun;Lin, Zeng;Ba, Yaoshuai;Ba, Dechun
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1388-1392
    • /
    • 2018
  • Metal thin films are used widely to solve the vibration problem. However, damping mechanism is still not clear, which limits the further improvement of the damping properties for film and the development of multi-functional damping coating. In this paper, Damping microscopic mechanism of porous metal films was investigated at both macroscopically and microscopically mixed levels. Molecular dynamics simulation method was used to model and simulate the loading-unloading numerical experiment on the micro-pore and vacancy model to get the stress-strain curve and the microstructure diagram of different defects. And damping factor was calculated by the stress-strain curve. The results show that dislocations and new vacancies appear in the micro-pores when metal film is stretched. The energetic consumption from the motion of dislocation is the main reason for the damping properties of materials. Micro-mechanism of damping properties is discussed with the results of in-situ experiment.

Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures

  • Han, Cheol-Min;Lih, Eugene;Choi, Seul-Ki;Bedair, Tarek M.;Lee, Young-Jae;Park, Wooram;Han, Dong Keun;Son, Jun Sik;Joung, Yoon Ki
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제67권
    • /
    • pp.396-406
    • /
    • 2018
  • In this study, a polydioxanone (PDO) and poly(L-lactic acid) (PLLA) sheath-core biphasic monofilament was designed to develop an esophageal stent with improved mechanical properties and controlled biodegradability. The radial force of PDO/PLLA sheath-core stent was 10.24 N, while that of PDO stent was 5.64 N. Deteriorations of tensile strength, elastic modulus and elongation during degradation test were also delayed on PDO/PLLA group. Hyaluronic acid-dopamine conjugate and $BaSO_4/PDO$ conjugate coating layers provided improved tissue adhesion strength and reasonable X-ray contrast, respectively. Taken all together, the sheath-core filaments with tissue adhesive and radiopaque properties will be useful in designing esophageal stents.

Spectral-shape-controllable Chirped Fiber Bragg Grating with a Photomechanical Microactuator: Simulation and Experiment

  • Moon, Jong-Ju;Ko, Youngmin;Park, Su-Jeong;Ahn, Tae-Jung
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.477-482
    • /
    • 2020
  • Recently, one of the authors has been reported an optically tunable fiber Bragg grating (FBG) with a photomechanical polymer. It was based on a typical FBG with a downsized diameter of 60 ㎛, coated with azobenzene-containing polymer material. Azobenzene is a well-known reversibly photomechanical stretchable material under ultraviolet (UV) light. The small part of the functional-coating region on the FBG absorbed UV light, which pulled the UV-exposed part of the grating. It was selectable as tunable FBG or tunable chirped FBG, by adjusting the position of UV exposure on the grating. As proof of concept for the tunable FBG device, the characteristics just including UV-induced center-wavelength shift and spectral-width changes of the device were reported. In this paper, we report for the first time that the microactuator makes it possible to control the spectral shape of the FBG reflection, according to the specifications (shape and intensity) of the UV beam that reaches the FBG coated with the azobenzene polymer. In addition, we provide the group-delay profiles for the chirped FBG, so that the sign of its dispersion (normal or anomalous) can be tailored by simply selecting the moving direction of the UV light's displacement in the experiment.

ODDMAC를 이용한 항균성 및 발수성 동시 발현이 가능한 기능성 PET 섬유 (Antimicrobial and Water Repellency Effect of Functional PET Fibers with ODDMAC(octadecyldimethyl(3-triethoxy silylpropyl) ammonium chloride))

  • 양희진;전혜지;이상오;이재웅
    • 한국염색가공학회지
    • /
    • 제32권4호
    • /
    • pp.265-273
    • /
    • 2020
  • In this study, octadecyldimethyl(3-triethoxy silylpropyl)ammonium chloride (ODDMAC) incorporated with Polyethylene terephthalate (PET) fabrics with different environmental conditions such as various temperature and time intervals. First, ODDMAC (15 weight %) was dissolved in ethanol. Then PET fabrics immersed in the ODDMAC solution at 25 ℃ for 10 minutes and dried at 80 ℃ for 5 minutes. The dried PET/PDDMAC fabrics carried out for curing process out at 110 ℃ ~ 190 ℃. The treated PET/ODDMAC has examined the surface and side coating properties through SEM analysis and elemental analysis. PET/ODDMAC fabric washed with water up to 50 times and studied the durability of the materials. It was confirmed that the treated PET fabric also exhibited good water repellency. In addition, the antimicrobial activity against the gram-positive bacteria Staphylococcus aureus and gram-negative bacteria Escherichia coli were studied by the disc diffusion method on the treated fabric.

Electrical and thermal properties of polyamideimide-colloid silica nanohybrid for magnetic enameled wire

  • Han, S.W.;Kang, D.P.
    • Journal of Ceramic Processing Research
    • /
    • 제13권spc2호
    • /
    • pp.428-432
    • /
    • 2012
  • Polyamidimide (PAI)-colloidal silica (CS) nanohybrid films were synthesized by an advanced sol-gel process. The synthesized PAI-CS hybrid films have a uniform and stable chemical bonding and there is no interfacial defects observed by TEM. The thermal degradation ratio of PAI-CS (10 wt%) hybrid films is delayed by 100 ℃ compared with pure PAI sample determined by on set temperature range in TGA. The dielectric constant of PAI-CS (10 wt%) hybrid films decreases with increasing CS content up to about 5 wt% but increases at higher CS content, which is not explained simply by effective medium therories (EMT). The duration time of PAI-CS (10 wt%) hybrid coil is 38 sec, which is very longer than that of pure PAI coil sample. The PAI-CS (10 wt%) hybrid film has a higher breakdown voltage resistance than the pure PAI film at surge environment and exhibits superior heat resistance. The PAI-CS (10 wt%) sample shows the advanced and stable thermal emission properties in transformer module compared with the pure PAI sample. This result illustrates that the advanced thermal conductivity and expansion properties of PAI-CS sample in the case of appropriate sol-gel processes brings the stable thermal emission in transformer system. Therefore, new PAI-CS hybrid samples with such stable thermal emission properties are expected to be used as a high functional coating application in ET, IT and electric power products.

임플랜트 지대주 나사의 텅스텐 카바이드/탄소 코팅이나사풀림에 미치는 영향 (Influence of tungsten carbide/carbon coating of implant-abutment screw on screw loosening)

  • 박재경;정창모;전영찬;윤지훈
    • 대한치과보철학회지
    • /
    • 제46권2호
    • /
    • pp.137-147
    • /
    • 2008
  • 임플랜트 보철물에서 각 구성 요소를 연결하는 나사 풀림 현상이 흔히 발생하고 있다. 나사 풀림을 최소화하기 위해서 연결 구성 부품 사이의 압축력을 최대로 하는 것이 중요한데, 나사 신장의 허용 한계 내에서 조임회전력을 증가시켜 나사 내부의 인장력 즉 전하중을 극대화하기 위해서는 마찰 계수를 감소시켜 초기 조임회전력의 손실을 최소화해야 한다. 건조 윤활제를 나사 표면에 코팅한 나사들이 전하중을 증가시키고 나사 풀림을 감소시키나 나사의 반복체결에 따른 코팅표면의 마모가 문제점으로 지적되고 있다. 최근 내마모성이 우수하며 동시에 나사의 마찰 저항을 최소화할 수 있는 텅스텐 카바이드/탄소 코팅을 이용한 나사가 임상에 사용되고 있으나 실제적으로 연결부 안정성에 미치는 영향에 관한 연구는 미미한 편이다. 이에 본 연구에서는 external butt joint 형태를 가지는 US II 시스템과 one stage용 8도의 internal cone 연결형태의 SS II 시스템 및 11도의 internal cone 연결형태의 GS II 시스템에서 티타늄 합금 나사의 텅스텐 카바이드/탄소 코팅이 지대주 나사 풀림에 미치는 영향을 알아보기 위하여 100만 회 반복 하중 전후의 풀림회전력 및 상실률을 비교한 결과 다음과 같은 결론을 얻었다. 1. 초기 풀림회전력은 티타늄 합금나사보다 텅스텐 카바이드/탄소 코팅 나사를 사용한 경우 작게 나타났으며 (P<.01), 동일 나사를 사용한 경우에는 임플랜트 시스템 간에 차이가 없었다 (P>.05). 2. 반복하중에 따른 풀림회전력의 상실률은 두 나사 모두에서 external butt joint 형태의 US II 시스템이 internal cone 연결형태의 SS II 와 GS II 시스템 보다 크게 나타났으나, SS II 와 GS II 시스템 사이에는 차이를 보이지 않았다 (P<.01). 3. 텅스텐 카바이드/탄소 코팅 나사를 사용한 경우 티타늄 합금 나사에 비해 모든 시스템에서 반복하중 후 풀림회전력 상실률이 작게 나타났으며 (P<.01), 코팅 나사 사용으로 인한 상실률의 감소차는 임플랜트 시스템 간에 차이를 보이지 않았다 (P>.05).

Modern Paper Quality Control

  • Olavi Komppa
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2000년도 제26회 펄프종이기술 국제세미나
    • /
    • pp.16-23
    • /
    • 2000
  • The increasing functional needs of top-quality printing papers and packaging paperboards, and especially the rapid developments in electronic printing processes and various computer printers during past few years, set new targets and requirements for modern paper quality. Most of these paper grades of today have relatively high filler content, are moderately or heavily calendered , and have many coating layers for the best appearance and performance. In practice, this means that many of the traditional quality assurance methods, mostly designed to measure papers made of pure. native pulp only, can not reliably (or at all) be used to analyze or rank the quality of modern papers. Hence, introduction of new measurement techniques is necessary to assure and further develop the paper quality today and in the future. Paper formation , i.e. small scale (millimeter scale) variation of basis weight, is the most important quality parameter of paper-making due to its influence on practically all the other quality properties of paper. The ideal paper would be completely uniform so that the basis weight of each small point (area) measured would be the same. In practice, of course, this is not possible because there always exists relatively large local variations in paper. However, these small scale basis weight variations are the major reason for many other quality problems, including calender blacking uneven coating result, uneven printing result, etc. The traditionally used visual inspection or optical measurement of the paper does not give us a reliable understanding of the material variations in the paper because in modern paper making process the optical behavior of paper is strongly affected by using e.g. fillers, dye or coating colors. Futhermore, the opacity (optical density) of the paper is changed at different process stages like wet pressing and calendering. The greatest advantage of using beta transmission method to measure paper formation is that it can be very reliably calibrated to measure true basis weight variation of all kinds of paper and board, independently on sample basis weight or paper grade. This gives us the possibility to measure, compare and judge papers made of different raw materials, different color, or even to measure heavily calendered, coated or printed papers. Scientific research of paper physics has shown that the orientation of the top layer (paper surface) fibers of the sheet paly the key role in paper curling and cockling , causing the typical practical problems (paper jam) with modern fax and copy machines, electronic printing , etc. On the other hand, the fiber orientation at the surface and middle layer of the sheet controls the bending stiffness of paperboard . Therefore, a reliable measurement of paper surface fiber orientation gives us a magnificent tool to investigate and predict paper curling and coclking tendency, and provides the necessary information to finetune, the manufacturing process for optimum quality. many papers, especially heavily calendered and coated grades, do resist liquid and gas penetration very much, bing beyond the measurement range of the traditional instruments or resulting invonveniently long measuring time per sample . The increased surface hardness and use of filler minerals and mechanical pulp make a reliable, nonleaking sample contact to the measurement head a challenge of its own. Paper surface coating causes, as expected, a layer which has completely different permeability characteristics compared to the other layer of the sheet. The latest developments in sensor technologies have made it possible to reliably measure gas flow in well controlled conditions, allowing us to investigate the gas penetration of open structures, such as cigarette paper, tissue or sack paper, and in the low permeability range analyze even fully greaseproof papers, silicon papers, heavily coated papers and boards or even detect defects in barrier coatings ! Even nitrogen or helium may be used as the gas, giving us completely new possibilities to rank the products or to find correlation to critical process or converting parameters. All the modern paper machines include many on-line measuring instruments which are used to give the necessary information for automatic process control systems. hence, the reliability of this information obtained from different sensors is vital for good optimizing and process stability. If any of these on-line sensors do not operate perfectly ass planned (having even small measurement error or malfunction ), the process control will set the machine to operate away from the optimum , resulting loss of profit or eventual problems in quality or runnability. To assure optimum operation of the paper machines, a novel quality assurance policy for the on-line measurements has been developed, including control procedures utilizing traceable, accredited standards for the best reliability and performance.