DOI QR코드

DOI QR Code

Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures

  • Han, Cheol-Min (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Lih, Eugene (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Choi, Seul-Ki (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Bedair, Tarek M. (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Young-Jae (S&G Biotech Inc.) ;
  • Park, Wooram (Department of Biomedical Science, CHA University) ;
  • Han, Dong Keun (Department of Biomedical Science, CHA University) ;
  • Son, Jun Sik (Korea Textile Development Institute) ;
  • Joung, Yoon Ki (Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST))
  • Received : 2018.06.08
  • Accepted : 2018.07.11
  • Published : 2018.11.25

Abstract

In this study, a polydioxanone (PDO) and poly(L-lactic acid) (PLLA) sheath-core biphasic monofilament was designed to develop an esophageal stent with improved mechanical properties and controlled biodegradability. The radial force of PDO/PLLA sheath-core stent was 10.24 N, while that of PDO stent was 5.64 N. Deteriorations of tensile strength, elastic modulus and elongation during degradation test were also delayed on PDO/PLLA group. Hyaluronic acid-dopamine conjugate and $BaSO_4/PDO$ conjugate coating layers provided improved tissue adhesion strength and reasonable X-ray contrast, respectively. Taken all together, the sheath-core filaments with tissue adhesive and radiopaque properties will be useful in designing esophageal stents.

Keywords

Acknowledgement

Supported by : National Research Foundation (NRF), Ministry of Trade Industry and Energy (MOTIE)

References

  1. P.D. Siersema, Nat. Clin. Pract. Gastroenterol. Hepatol. 5 (2008) 142. https://doi.org/10.1038/ncpgasthep1053
  2. K. Kujawski, M. Stasiak, J. Rysz, Med. Sci. Monit. 18 (2012) CR323.
  3. P. Hindy, J. Hong, Y. Lam-Tsai, F. Gress, Gastroenterol. Hepatol. 8 (2012) 526.
  4. D.E. Sigounas, S. Siddhi, J.N. Plevris, Endosc. Int. Open 4 (2016) E618. https://doi.org/10.1055/s-0042-105433
  5. H.J. Ahn, R. Khalmuratova, S.A. Park, E.J. Chung, H.W. Shin, S.K. Kwon, Tissue Eng. Regen. Med. 14 (2017) 631. https://doi.org/10.1007/s13770-017-0057-y
  6. S.W. Fry, D.E. Fleischer, Gastrointest. Endosc. 45 (1997) 179. https://doi.org/10.1016/S0016-5107(97)70244-X
  7. Y. Saito, T. Tanaka, A. Andoh, H. Minematsu, K. Hata, T. Tsujikawa, N. Nitta, K. Murata, Y. Fujiyama, Dig. Dis. Sci. 53 (2008) 330. https://doi.org/10.1007/s10620-007-9873-6
  8. S. Somekawa, A. Mahara, K. Masutani, Y. Kimura, H. Urakawa, T. Yamaoka, Tissue Eng. Regen. Med. 14 (2017) 507. https://doi.org/10.1007/s13770-017-0067-9
  9. H.A. Rothan, S.A. Mahmod, I. Djordjevic, M. Golpich, R. Yusof, S. Snigh, Tissue Eng. Regen. Med. 14 (2017) 93. https://doi.org/10.1007/s13770-017-0023-8
  10. K.K. Yang, X.L. Wang, Y.Z. Wang, J. Macromol. Sci. C 42 (2002) 373. https://doi.org/10.1081/MC-120006453
  11. S.M. Stivaros, L.R. Williams, C. Senger, L. Wilbraham, H.U. Laasch, Eur. Radiol. 20 (2010) 1069. https://doi.org/10.1007/s00330-009-1662-5
  12. M. Zilberman, K.D. Nelson, R.C. Eberhart, J. Biomed. Mater. Res. 74B (2005) 792. https://doi.org/10.1002/jbm.b.30319
  13. C.-e. Wang, P.-h. Zhang, AUTEX Res. J. 16 (2016) 80. https://doi.org/10.1515/aut-2015-0031
  14. A. Repici, N. Pagano, G. Rando, A. Carlino, E. Vitetta, E. Ferrara, G. Strangio, A. Zullo, C. Hassan, Surg. Endosc. 27 (2013) 2487. https://doi.org/10.1007/s00464-012-2762-x
  15. N. Srinivasan, R.A. Kozarek, Tech. Gastrointest. Endosc. 16 (2014) 92. https://doi.org/10.1016/j.tgie.2014.03.001
  16. S.A. Arvidson, K.C. Wong, R.E. Gorga, S.A. Khan, Polymer 53 (2012) 791. https://doi.org/10.1016/j.polymer.2011.12.042
  17. A. Matsuda, T. Ikoma, H. Kobayashi, J. Tanaka, Mater. Sci. Eng. C Mater. Biol. Appl. 24 (2004) 723. https://doi.org/10.1016/j.msec.2004.08.047
  18. A.J.R. Lasprilla, G.A.R. Martinez, B.H. Lunelli, A.L. Jardini, R.M. Filho, Biotechnol. Adv. 30 (2012) 321. https://doi.org/10.1016/j.biotechadv.2011.06.019
  19. J.H. Park, D.Y. Kwon, J.Y. Heo, S.H. Park, J.Y. Park, B. Lee, J.H. Kim, M.S. Kim, Tissue Eng. Regen. Med. 14 (2017) 743. https://doi.org/10.1007/s13770-017-0077-7
  20. S. Shivalkar, S. Singh, Tissue Eng. Regen. Med. 14 (2017) 187. https://doi.org/10.1007/s13770-016-0002-5
  21. S.H. Oh, S.C. Park, H.K. Kim, Y.J. Koh, J.H. Lee, M.C. Lee, J.H. Lee, J. Biomater. Sci. Polym. Ed. 22 (2011) 225. https://doi.org/10.1163/092050609X12597621891620
  22. M. Karakoy, E. Gultepe, S. Pandey, M.A. Khashab, D.H. Gracias, Appl. Surf. Sci. 311 (2014) 684. https://doi.org/10.1016/j.apsusc.2014.05.136
  23. A.N. Holm, J.G. de la Mora Levy, C.J. Gostout, M.D. Topazian, T.H. Baron, Gastrointest. Endosc. 67 (2008) 20. https://doi.org/10.1016/j.gie.2007.04.031
  24. H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Science 318 (2007) 426. https://doi.org/10.1126/science.1147241
  25. A.I. Neto, A.C. Cibrao, C.R. Correia, R.R. Carvalho, G.M. Luz, G.G. Ferrer, G. Botelho, C. Picart, N.M. Alves, J.F. Mano, Small 10 (2014) 2459. https://doi.org/10.1002/smll.201303568
  26. C. Gong, C. Lu, B. Li, M. Shan, G. Wu, J. Biomed. Mater. Res. Part A 105 (2017) 1000. https://doi.org/10.1002/jbm.a.35931
  27. M. Cencer, Y. Liu, A. Winter, M. Murley, H. Meng, B.P. Lee, Biomacromolecules 15 (2014) 2861. https://doi.org/10.1021/bm500701u
  28. E. Lih, S.G. Choi, D.J. Ahn, Y.K. Joung, D.K. Han, J. Tissue Eng. 7 (2016) 2041731416683745.
  29. J.R.E. Fraser, T.C. Laurent, U.B.G. Laurent, J. Int. Med. J. Intern. Med. 242 (1997) 27.
  30. M.N. Collins, C. Birkinshaw, Carbohydr. Polym. 92 (2013) 1262. https://doi.org/10.1016/j.carbpol.2012.10.028
  31. H. Knopf-Marques, M. Pravda, L. Wolfova, V. Velebny, P. Schaaf, N.E. Vrana, P. Lavalle, Adv. Healthc. Mater. 5 (2016) 2841. https://doi.org/10.1002/adhm.201600316
  32. S. Kim, Y. Jang, L.K. Jang, S.H. Sunwoo, T.-i. Kim, S.W. Cho, J.Y. Lee, J. Mater. Chem. B 5 (2017) 4507.
  33. S. Saphier, A. Rosner, R. Brandeis, Y. Karton, Int. J. Pharm. 388 (2010) 190. https://doi.org/10.1016/j.ijpharm.2010.01.001
  34. M.S. Wilson, S. Gottesfeld, J. Appl. Electrochem. 22 (1992) 1. https://doi.org/10.1007/BF01093004
  35. V.C. Pinto, T. Ramos, S. Alves, J. Xavier, P. Tavares, P.M.G.P. Moreira, R.M. Guedes, Procedia Eng. 114 (2015) 635. https://doi.org/10.1016/j.proeng.2015.08.004
  36. H. Lee, Y. Lee, A.R. Statz, J. Rho, T.G. Park, P.B. Messersmith, Adv. Mater. 20 (2008) 1619. https://doi.org/10.1002/adma.200702378
  37. P. Yimsiri, M.R. Mackley, Chem. Eng. Sci. 61 (2006) 3496. https://doi.org/10.1016/j.ces.2005.12.018
  38. H. Ai, K.M. David, S.J. Alexander, A.J. Steven, In Vitro Cell. Dev. Biol. Anim. 38 (2002) 487.
  39. C.K. Kuo, P.X. Ma, Biomaterials 22 (2001) 511. https://doi.org/10.1016/S0142-9612(00)00201-5
  40. S. Hong, K. Yang, B. Kang, C. Lee, I.T. Song, E. Byun, K.I. Park, S.W. Cho, H. Lee, Adv. Funct. Mater. 23 (2013) 1774. https://doi.org/10.1002/adfm.201202365
  41. Y. Ji, T. Ji, K. Liang, L. Zhu, J. Mater. Sci. Mater. Med. 27 (2015) 30.
  42. E.Y. Jeon, B.H. Hwang, Y.J. Yang, B.J. Kim, B.H. Choi, G.Y. Jung, H.J. Cha, Biomaterials 67 (2015) 11. https://doi.org/10.1016/j.biomaterials.2015.07.014
  43. C. Fan, J. Fu, W. Zhu, D.A. Wang, Acta Biomater. 33 (2016) 51. https://doi.org/10.1016/j.actbio.2016.02.003
  44. M.M. Hirdes, F.P. Vleggaar, M. de Beule, P.D. Siersema, Endoscopy 45 (2013) 997. https://doi.org/10.1055/s-0033-1344985
  45. E.M. Pauli, S.J. Schomisch, J.P. Furlan, A.S. Marks, A. Chak, R.H. Lash, J.L. Ponsky, J.M. Marks, Surg. Endosc. 26 (2012) 3500. https://doi.org/10.1007/s00464-012-2373-6
  46. O. Nogales Rincon, A. Huerta Madrigal, B. Merino Rodriguez, C. Gonzalez Asanza, E. Cos Arregui, P. Menchen Fernandez-Pacheco, Endoscopy 43 (2011) E189. https://doi.org/10.1055/s-0030-1256324
  47. W.Q. Meeker, L.A. Escobar, C.J. Lu, Technometrics 40 (1998) 89. https://doi.org/10.1080/00401706.1998.10485191
  48. N. Goonoo, R. Jeetah, A. Bhaw-Luximon, D. Jhurry, Eur. J. Pharm. Biopharm. 97 (2015) 371. https://doi.org/10.1016/j.ejpb.2015.05.024
  49. E. Byun, H. Lee, J. Nanosci. Nanothecnol. 14 (2014) 7395. https://doi.org/10.1166/jnn.2014.9571
  50. H. Ye, Y. Xia, Z. Liu, R. Huang, R. Su, W. Qi, L. Wang, Z. He, J. Mater. Chem. B 4 (2016) 4084. https://doi.org/10.1039/C6TB01022A
  51. M.S. Lee, J.E. Lee, E. Byun, N.W. Kim, K. Lee, H. Lee, S.J. Sim, D.S. Lee, J.H. Jeong, J. Control. Release 192 (2014) 122. https://doi.org/10.1016/j.jconrel.2014.06.049
  52. Y. Cho, S.Y. Seo, B.J. Park, Y.K. Joung, D.K. Han, Macromol. Res. 25 (2017) 841. https://doi.org/10.1007/s13233-017-5092-y

Cited by

  1. An Overview of the Design, Development and Applications of Biodegradable Stents vol.10, pp.1, 2018, https://doi.org/10.2174/2210303109666190617165344
  2. Using of Polyaniline-Polyvinyl Acetate Composite to Remove Mercury from Aqueous Media vol.14, pp.3, 2018, https://doi.org/10.1007/s41742-020-00256-3
  3. Construction and application of textile-based tissue engineering scaffolds: a review vol.8, pp.13, 2018, https://doi.org/10.1039/d0bm00157k
  4. Raman Spectroscopy as a Novel Method for the Characterization of Polydioxanone Medical Stents Biodegradation vol.14, pp.18, 2018, https://doi.org/10.3390/ma14185462
  5. Mechanical properties and degradation process of biliary self‐expandable biodegradable stents vol.33, pp.7, 2018, https://doi.org/10.1111/den.13916