• Title/Summary/Keyword: functional characterization

Search Result 798, Processing Time 0.023 seconds

Characterization of Rabbit Retinal Ganglion Cells with Multichannel Recording (다채널기록법을 이용한 토끼 망막 신경절세포의 특성 분석)

  • Cho Hyun Sook;Jin Gye-Hwan;Goo Yong Sook
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.228-236
    • /
    • 2004
  • Retinal ganglion cells transmit visual scene as an action potential to visual cortex through optic nerve. Conventional recording method using single intra- or extra-cellular electrode enables us to understand the response of specific neuron on specific time. Therefore, it is not possible to determine how the nerve impulses in the population of retinal ganglion cells collectively encode the visual stimulus with conventional recording. This requires recording the simultaneous electrical signals of many neurons. Recent advances in multi-electrode recording have brought us closer to understanding how visual information is encoded by population of retinal ganglion cells. We examined how ganglion cells act together to encode a visual scene with multi-electrode array (MEA). With light stimulation (on duration: 2 sec, off duration: 5 sec) generated on a color monitor driven by custom-made software, we isolated three functional types of ganglion cell activities; ON (35.0$\pm$4.4%), OFF (31.4$\pm$1.9%), and ON/OFF cells (34.6$\pm$5.3%) (Total number of retinal pieces = 8). We observed that nearby neurons often fire action potential near synchrony (< 1 ms). And this narrow correlation is seen among cells within a cluster which is made of 6~8 cells. As there are many more synchronized firing patterns than ganglion cells, such a distributed code might allow the retina to compress a large number of distinct visual messages into a small number of ganglion cells.

  • PDF

Enzymatic Synthesis and Characterization of Structured Lipids from Docosahexaenoic Acid - Enriched Fish oil and Soybean oil (어유와 대두유로부터 기능성 유지의 효소적 합성)

  • Kim, Yu-Mi;Jeon, Mi-Sun;Lee, Jeung-Hee;Lee, Ki-Teak
    • Food Science and Preservation
    • /
    • v.15 no.3
    • /
    • pp.437-444
    • /
    • 2008
  • Structured lipids(SLs) were synthesized by enzymatic interesterification with DHA-enriched fish oil(containing 27% docosahexaenoic acid) and soybean oil in the hatch-type reactor. The interesterification was performed for 24 hr at $55^{\circ}C$ and TLIM(immobilized lipase from Thermonyces lanuginosa, 10% by weight of total substrates) was mixed with 180 rpm of shaking. The fish oil and soybean oil were interesterifed with several weight ratio(fish oil : soybean oil, 2:8, 3:7, 4:6, 5:5, w:w), Reverse-phase high performance liquid chromatography with an evaporative light-scattering detector separated the triglyceride species of SLs. The products contained the newly synthesized peaks. Especially, one of peaks was distinctively increased with the increasing weight ratio from 2:8 to 5:5 while the peak of trilinolein (LLL) decreased vice versa. The effect of antioxidants such as catechin, BHT(Butylated hydroxytoluene), and their combinations on the oxidative stability in SL were investigated. Oxidative stability was carried out under oven test at $60^{\circ}C$ over 72 hr thereafter SLs were analyzed for total fatty acid content, rancimat, peroxide value, electronic nose and TBARS value. Among all combinations of antioxidant, the highest stability was obtained from 200 ppm of catechin. Besides, total tocopherol ($\alpha$, $\gamma$, and $\delta$-tocopherol), iodine and saponification value were analyzed in which iodine and saponification value of SLs were 151.19 and 182.35.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.

Characterization of the Germinated Rices to Examine an Application Potentials as Functional Rice Processed Foods (기능성 쌀가공식품 원료료의 활용가능성 검토를 위한 발아미의 특성조사)

  • Kang, Mi-Young;Lee, Yeon-Ri;Nam, Seok-Hyun
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.696-701
    • /
    • 2003
  • Rice seeds of 4 cultivars including Whachung and Nampung, of the non-waxy rice cultivars, and Shinsunchalbyeo and Whachungchabyeo, of the waxy rice cultivars, were germinated at $27^{\circ}C$ for 3 days to compare the changes in some physico-chemical properties of the starch granules and the starch-hydrolysing enzyme activities during germination, respectively. With the starch granules, the amount of long glucose chains from amylose molecules were reduced in the non-waxy rices, while the chain length increased in the waxy rices. In the distribution profile of the glucose chain length from amylose molecules, we could observed that the chain length with DP (degree of polymerization) ranged 33 to 66 increased with the decreasing rate of the chain length with that above 130, regardless of the waxiness of rices. In addition, we observed that in contrast to a increase in chain length with DP ranged 14 to 33, the amount of short chains from A chain fraction decreased. Germination induced slight reduction in the polymerization rate of starch granules, and decrease in both initiation and termination temperatures for the gelatinization. ${\alpha}-Amylase$ activity of rices germinated for 3 days found to he higher than that of malt. Especially, the activity of Shinsunchalbyeo was revealed to be highest, about two fold higher than that of malt. In contrast, ${\beta}-amylase$ of the waxy rice found to be considerably less active than malt, although the waxy showed prevalent activity as compared to the non-waxy rices.

Characterization of a Novel DWD Protein that Participates in Heat Stress Response in Arabidopsis

  • Kim, Soon-Hee;Lee, Joon-Hyun;Seo, Kyoung-In;Ryu, Boyeong;Sung, Yongju;Chung, Taijoon;Deng, Xing Wang;Lee, Jae-Hoon
    • Molecules and Cells
    • /
    • v.37 no.11
    • /
    • pp.833-840
    • /
    • 2014
  • Cullin4-RING ubiquitin ligase (CRL4) is a family of multi-subunit E3 ligases. To investigate the possible involvement of CRL4 in heat stress response, we screened T-DNA insertion mutants of putative CRL4 substrate receptors that exhibited altered patterns in response to heat stress. One of the mutants exhibited heat stress tolerance and was named heat stress tolerant DWD1 (htd1). Introduction of HTD1 gene into htd1-1 led to recovery of heat sensitivity to the wild type level, confirming that the decrease of HTD1 transcripts resulted in heat tolerance. Therefore, HTD1 plays a negative role in thermotolerance in Arabidopsis. Additionally, HTD1 directly interacted with DDB1a in yeast two-hybrid assays and associated with DDB1b in vivo, supporting that it could be a part of a CRL4 complex. Various heat-inducible genes such as HSP14.7, HSP21, At2g03020 and WRKY28 were hyper-induced in htd1-1, indicating that HTD1 could function as a negative regulator for the expression of such genes and that these genes might contribute to thermotolerance of htd1-1, at least in part. HTD1 was associated with HSP90-1, a crucial regulator of thermotolerance, in vivo, even though the decrease of HTD1 did not affect the accumulation pattern of HSP90-1 in Arabidopsis. These findings indicate that a negative role of HTD1 in thermotolerance might be achieved through its association with HSP90-1, possibly by disturbing the action of HSP90-1, not by the degradation of HSP90-1. This study will serve as an important step toward understanding of the functional connection between CRL4-mediated processes and plant heat stress signaling.

Characterization of Insulation Finish Material Using Inorganic Wet Treatment Fly Ash (무기성 습식 처리 플라이애시를 활용한 단열 외피 마감재의 특성 평가)

  • Ryu, Hwa-Sung;Shin, Sang-Heon;Song, Sung-Young;Kim, Deuak-Mo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.389-394
    • /
    • 2019
  • In this study, a functional inorganic insulation as TiO2 and inorganic wet fly ash were used to evaluate the physical performance and thermal environment of an exterior finish that can improve the thermal environment of a building. The performance evaluation of the finish was based on the KS F 4715 thin coating material and the thermal environment. When TiO2 was added, the physical performance was lowered at 10% or more, and the inorganic wet-treated fly ash increased the physical performance by 10%. In the thermal environmental evaluation, the surface temperature reduction effect of the inorganic wet-treated fly ash was low, but when used in combination with TiO2, it was effective to reduce the surface temperature and the internal temperature. As a result, the optimum combination of TiO2 and inorganic wet-treated fly ash for thermal environment control was found to be optimal when 5% of each mixture was used.

Construction and Characterization of a cDNA Library from the Camelina sativa L. as an Alternative Oil-Seed Crop (신 바이오디젤 원료 작물인 Camelina의 cDNA library 제작 및 유전자 특성)

  • Park, Won;Jang, Young-Seok;Ahn, Sung-Ju
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.151-158
    • /
    • 2010
  • Camelina sativa L., known as popular names "gold-of-pleasure" or "false flax" is an alternative oilseed crop that can be grown under different climatic and soil conditions. Up to date, however, the genomic information of Camelina has not been studied in detail. Therefore, a cDNA library was constructed and characterized from young leaves. The constructed cDNA library incorporated of 1334 cDNA clones and the size of the insertion fragments average was 736 base pair. We generated a total of 1269 high-quality expressed sequence tags (ESTs) sequences. The result of cluster analysis of EST sequences showed that the number of unigene was 851. According to subsequent analysis, the 476 (55.9%) unigenes were highly homologous to known function genes and the other 375 (44.1%) unigenes were unknown. Remaining 63 (7.4%) unigenes had no homology with any other peptide in NCBI database, indicating that these seemed to be novel genes expressed in leaves of Camelina. The database-matched ESTs were further classified into 17 categories according to their functional annotation. The most abundant of categories were "protein with binding function or cofactor requirement (27%)", "metabolism (11%)", "subcellular localization (11%)", "cellular transport, transport facilities and transport routes (7%)", "energy (6%)", "regulation of metabolism and protein function (6%)". Our result in this study provides an overview of mRNA expression profile and a basal genetic information of Camelina as an oilseed crop.

Spectroscopic Characterization and Seasonal Distribution of Aquatic Humic Substances Isolated from Han River Water (한강원수로부터 분리된 수중휴믹물질의 계절적 분포와 분광학적 특성분석)

  • Kim, Hyun-Chul;Lee, Seock-Heon;Kim, Kyung-Ju;Yu, Myong-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.5
    • /
    • pp.540-547
    • /
    • 2007
  • Humic substances(HS) from Han River water was physic-chemically isolated by fractionational methods to investigate the seasonal distribution and to characterize the properties compared with intrinsic humic materials. Various HS samples were analyzed by element, Fourier transform infrared(FT-IR), proton nuclear magnetic resonance$(^1H-NMR)$ and fluorescence analyzers. The portion of HS from Han River water(HRHS) was 47.0% on the average, however it appeared that rainfall event brought about higher fraction of HS in Han River water by the periodic investigation. Aromaticity and humification degree of the HRHS were relatively lower than those of intrinsic humic materials originated from decomposing vegetation. FT-IR, $^1H-NMR$ and fluorescence spectroscopy showed the distinct differences between HRHS and intrinsic humic materials. Commercial humic materials could not represent structural and functional characteristics of local HS. The fluorescence spectroscopy, a relatively simple measurement, was found most useful tool to estimate humification degree for humic materials from particular sources.

Food Component Characteristics of Tang from Conger Eel By-products (붕장어 부산물로 제조한 붕장어탕의 식품학적 특성)

  • Heu, Min-Soo;Lee, Take-Sang;Kim, Hye-Suk;Jee, Seung-Joon;Lee, Jae-Hyoung;Kim, Hyung-Jun;Yoon, Min-Seok;Park, Shin-Ho;Kim, Jin-Soo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.4
    • /
    • pp.477-484
    • /
    • 2008
  • For the effective use of the conger eel by-products, such as head and frame, Tang, which is the Korean-type soup, from conger eel by-products (TCEB) was developed and its food component characterization was compared with that of commercial Chueotang, loach Tang. According to the results of viable cells and coliform group of TCEB heated at $115^{\circ}C$ for various times, the reasonable $F_0$ value was 8 min. The proximate composition of TCEB was 90.7% for the moisture, 4.8% for the protein, 2.6% for the lipid, and 1.5% for the ash. The extractive-nitrogen content of TCEB was 243.1 mg/100 g, which was higher than that of commercial Chueotang, 208.0 mg/100 g. The total amino acid content of TCEB was 4,310 mg/100 g and its major amino acids were glutamic acid (637.3 mg/100 g, 14.8%), glycine (409.1 mg/100 g, 9.5%) and alanine (404.4 mg/100 g, 9.3%). TCEB was not felt in the sensual fish odor and its sensual taste was good. The health functional properties for health of TCEB were 1.29 as a PF (protection factor) for antioxidative activity and 39.4% for angiotensin Ⅰ converting enzyme (ACE) inhibiting activity.

Synthesis and Characterization of Poly(ethylene glycol) Grafted Polysuccinimide (폴리(에틸렌 글리콜)이 결합된 Polysuccinimide의 합성과 특성)

  • Lim, Nak-Hyun;Lee, Ha-Young;Kim, Moon-Suk;Khang, Gil-Son;Lee, Hai-Bang;Cho, Sun-Hang
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.36-40
    • /
    • 2005
  • Poly(amino acid) derivatives have been widely investigated as a drug carrier in drug delivery system. Particularly,polysuccinimide (PSI) is one of the most promising drug carriers since it possesses suitable physicochemical characteristics for development of macromolecular prodrugs, due to biocompatibility and biodegradability. In this study, we deal with the synthesis of polyaspartamide having various functional groups such as methoxy-poly(ethylene glycol) (MPEG) via ring closing of PSI. PSI was synthesized by polyonensation polymerization of spartic acid. The variety of average molecular weight was confirmed with reacion time and catalyst content to observe the optimum condition of synthesis. MPEG, hydrophilic chain, was bonded to fabricate polymeric micell composed of hydrophilic and hydrophobic polymer. All materials were characterized by 1H-NMR, FT-IR and GPC. In addition, the formation of nanoparticle micelle as drug carrier were also examined. Micelle size was measured by ELS and AFM. The functionalized polysparamide formed nanoparticle micelle whose size ranged from 90 to 130 nm. In conclusion, we prepared polyaspartamide functionalized with PEG examined the possibility as drug carriers.