DOI QR코드

DOI QR Code

Characterization of Insulation Finish Material Using Inorganic Wet Treatment Fly Ash

무기성 습식 처리 플라이애시를 활용한 단열 외피 마감재의 특성 평가

  • Received : 2019.11.04
  • Accepted : 2019.12.05
  • Published : 2019.12.30

Abstract

In this study, a functional inorganic insulation as TiO2 and inorganic wet fly ash were used to evaluate the physical performance and thermal environment of an exterior finish that can improve the thermal environment of a building. The performance evaluation of the finish was based on the KS F 4715 thin coating material and the thermal environment. When TiO2 was added, the physical performance was lowered at 10% or more, and the inorganic wet-treated fly ash increased the physical performance by 10%. In the thermal environmental evaluation, the surface temperature reduction effect of the inorganic wet-treated fly ash was low, but when used in combination with TiO2, it was effective to reduce the surface temperature and the internal temperature. As a result, the optimum combination of TiO2 and inorganic wet-treated fly ash for thermal environment control was found to be optimal when 5% of each mixture was used.

본 연구에서는 기능성 무기 단열 소재인 TiO2와 무기성의 습식 처리 플라이애시를 사용하여 건축물의 열환경성을 향상할 수 있는 외장 마감재의 물리적 성능과 열환경성에 대한 평가를 수행하였다. 마감재의 성능 평가는 KS F 4715의 얇은 바름재의 기준과 열환경성은 별도의 단열 박스를 제작하여 외부 표면 온도와 내부 온도를 측정하였다. TiO2를 혼입한 경우 10%이상에서는 물리적 성능이 저하되는 것으로 나타났으며, 무기성의 습식 처리 플라이애시는 10%까지 물리적 성능이 증가되는 것으로 나타났다. 열환경성 평가에서는 무기성의 습식 처리 플라이애시의 표면 온도 저감 효과는 낮았으나 TiO2와 복합적으로 사용되는 경우, 표면 온도 저감 및 내부 온도 저감에 효과적인 것으로 나타났다. 결국, 열환경 제어를 위한 TiO2와 무기성의 습식처리 플라이애시의 최적 배합은 각각 5%를 혼합 사용할 때 최적인 것으로 나타났다.

Keywords

References

  1. Choi, D.S., Jun, H.C., Joe, K.H. (2011). A study on the change in energy performance of the domestic building by the isolation-heat paint, The Korean Solar Energy Society, 31(5), 33-40. https://doi.org/10.7836/kses.2011.31.5.033
  2. Gil, H.S., Lee, S.W. (2016). Synthesis and infrared light reflecting characteristics of $TiO_2$/mica hybrid composites, Journal of Industrial and Engineering Chemistry, 27(1), 16-20.
  3. Jung, S.K., Jun, J.S., Seo, J.K., Kim, S.M. (2011). Consideration for application of phase change material(PCM) for building energy saving, Journal of Korean Institute of Architectural Sustainable Environment and Building Systems, 5(1), 48-56.
  4. Min, D.H., Kim, S.M., Kim, S.M., Kim, J.T. (2019). The thermal bridge characteristic of wall with vacuum insulation panels according to the thermal bridge reduction method, Korea Institute Ecologicla Architecture and Environment, 19(2), 81-86.
  5. Park, J.W., Chu, Y.S., Jung, J.H. (2016). Physical properties of calcium silicate inorganic insulation depending on curing time, Jounal of the Korea Insititute of Building Construction, 16(6), 529-624. https://doi.org/10.5345/JKIBC.2016.16.6.529
  6. Song, I.H., Park, Y.J., Yun, H.S., Hwang, K.Y., Choi, S.G. (2010). Insulation effect of porous ceramic materials and current status of insulation materials research, Machine and Material, 22(4), 6-20.
  7. Urunkar, Y., Pandit, A., Bhargava, P., Joshi, J., Mathpati, C., Vasanthakumaran, S., Jain, D., Hussain, Z., Patel, S., More, V. (2018). Light‐weight thermal insulating fly ash cenosphere ceramics, International Journal of Applied Ceramic Technology, 15(6), 1467-1477. https://doi.org/10.1111/ijac.12906