• 제목/요약/키워드: functional ceramics

검색결과 119건 처리시간 0.026초

첨가제의 조성이 폐유리-점토 타일의 곡강도에 미치는 영향 (Effect of Additive Composition on Flexural Strength of Cullet-Loess Tile Bodies)

  • 이영일;엄정혜;김영욱;송인혁
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.416-422
    • /
    • 2013
  • Cullet-loess tile bodies are successfully fabricated using cullet, loess, hollow microspheres, and sintering additives (borosilicate glass frit, boric acid, or fumed silica) as starting materials. The effects of the additive composition and sintering temperature on the sintered density and flexural strength of the cullet-loess tile bodies are investigated. The sintered density of the cullet-loess tile bodies increases with an increase in the sintering temperature as a result of the enhanced densification of pore walls through the viscous flow of a liquid phase formed from the glass frit and sintering additives. The flexural strength of the cullet-loess tile bodies increases with increases in the sintering temperature and the cullet content in the starting composition. A maximal flexural strength of 40 MPa is obtained in cullet-loess tile bodies sintered with glass frit at $800^{\circ}C$ in air.

Textured Ceramics for Multilayered Actuator Applications: Challenges, Trends, and Perspectives

  • Temesgen Tadeyos Zate;Nu-Ri Ko;Hye-Lim Yu;Woo-Jin Choi;Jeong-Woo Sun;Jae-Ho Jeon;Wook Jo
    • 한국전기전자재료학회논문지
    • /
    • 제36권3호
    • /
    • pp.214-225
    • /
    • 2023
  • Piezoelectric actuators, which utilize piezoelectric crystals or ceramics, are commonly used in precision positioning applications, offering high-speed response and precise control. However, the use of low-performance ceramics and expensive single crystals is limiting their versatile use in the actuator market, necessitating the development of both high-performance and cost-effective piezoelectric materials capable of delivering higher forces and displacements. The use of textured Pb (lead)-based piezoelectric ceramics formed by so-called templated grain growth method has been identified as a promising strategy to address the performance and cost issue. This review article provides insights into recent advances in texturing Pb-based piezoelectric ceramics for improved performance in actuation applications. We discussed the relevant issues in detail focusing on current challenges and emerging trends in the textured piezoelectric ceramics for their reliability and performance in actuator applications. We discussed in detail focusing on current challenges and emerging trends of textured piezoelectric ceramics for their reliability and performance in actuator applications. In conclusion, the article provides an outlook on the future direction of textured piezoelectric ceramics in actuator applications, highlighting the potential for further success in this field.

Processing of Vermiculite-Silica Composites with Prefer-Oriented Rod-Like Pores

  • Eom, Jung-Hye;Kim, Young-Wook;Lee, Seung-Seok;Jeong, Doo-Hoa
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.347-351
    • /
    • 2012
  • Vermiculite-silica composites with a layered structure were fabricated by adding cellulose fibers as a pore former and by a simple uniaxial pressing and subsequent sintering process. Three different combinations of additives were used and their effects on the compressive strength and thermal conductivity of the composites were investigated. Both compressive strengths (42-128 MPa) and thermal conductivities (0.75-1.48 $W/m{\cdot}K$) in the direction perpendicular to the pressing direction (T) were higher than those (19-81 MPa and 0.32-1.04 $W/m{\cdot}K$) in the direction parallel to the pressing direction (S) in all samples. The anisotropy in both properties was attributed to the microstructural anisotropy, which was caused by the layered structure developed in the composites.

반응소결 탄화규소 다공체의 기계적 특성 (Mechanical Properties of Porous Reaction Bonded Silicon Carbide)

  • 황성식;박상환;한재호;한경섭;김찬목
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.948-954
    • /
    • 2002
  • 차세대 발전 시스템에서 사용되는 고온 가스 필터용 지지층 소재를 제조하기 위하여 용융 Si 침윤 방법으로 기공율이 32∼36%, 주기공 크기가 37∼90 ${\mu}m$ 범위를 갖는 고강도 다공질 반응소결 탄화규소(RBSC)를 개발하였다. 반응소결 탄화규소 다공체의, 최대 파괴강도는 120MPa이었으며, 용융 Si 침윤 방법으로 제조된 반응소결 탄화규소 다공체에서는 SiC 입자 사이에 SiC/Si로 이루어진 기지상이 형성되어 있기 때문에 파괴 강도 및 열충격 특성이 점토 결합 탄화규소 다공체 보다 우수하였다. 반응소결 탄화규소 다공체의 기공율 및 기공 크기는 잔류 Si의 양 및 성형체에 사용한 SiC 입자 크기에 따라 다르게 나타났다.

산성광산배수 처리를 위한 산업부산물 소재 다기능성 세라믹의 적용 가능성 연구 (Feasibility Study on the Multi-functional Ceramics using Industrial By-product for Treatment of Acid Mine Drainage)

  • 이영남;임수빈
    • 한국지반환경공학회 논문집
    • /
    • 제18권12호
    • /
    • pp.25-36
    • /
    • 2017
  • 본 연구에서는 천연 제올라이트와 제강전로슬래그를 혼합 소성한 ZS 세라믹을 이용한 산성광산배수 내 중금속 및 황산이온의 제거 특성을 파악함으로써 산성광산배수 처리를 위한 ZS 세라믹의 적용 가능성을 평가하고자 하였다. 펠렛형 ZS(Zelolite-Slag) 세라믹을 이용한 회분식 실험에서 ZS 세라믹 내 천연 제올라이트에 대한 제강전로슬래그의 배합비가 증가할수록 중금속 제거효율 및 황산이온의 제거효율은 증가하였다. ZS 세라믹의 결합력 및 알칼리 공급능력, 중금속 및 황산이온 제거능력, 에너지 비용 측면에서 평가할 때 산성광산배수의 처리를 위한 ZS 세라믹의 최적의 제작 조건은 Z:S 배합비 1:2~1:3, 소성온도 $600{\sim}800^{\circ}C$, 소성시간 2시간인 것으로 파악되었다. 최적의 조건에서 제작된 ZS 세라믹에 의한 산성광산배수 처리 실험결과 중금속(Al, As, Cd, Cu, Fe, Mn, Pb, Zn)은 거의 100%에 가까운 매우 높은 제거효율을 얻을 수 있었으며, 황산이온에 대해서는 77.1%의 제거효율을 나타내고 있었다. 본 연구의 실험결과를 통해 판단해 볼 때 천연 제올라이트와 제강전로슬래그를 혼합 소성한 ZS 세라믹은 산성광산배수의 효과적인 처리제로서 적용될 가능성이 높을 것으로 기대된다.

Particle Stabilized Wet Foam to Prepare SiO2-SiC Porous Ceramics by Colloidal Processing

  • Bhaskar, Subhasree;Park, Jung Gyu;Han, In Sub;Lee, Mi Jai;Lim, Tae Young;Kim, Ik Jin
    • 한국세라믹학회지
    • /
    • 제52권6호
    • /
    • pp.455-461
    • /
    • 2015
  • Porous ceramics with tailored pore size and shape are promising materials for the realization of a number of functional and structural properties. A novel method has been reported for the investigation of the role of SiC in the formation of $SiO_2$ foams by colloidal wet processing. Within a suitable pH range of 9.9 ~ 10.5 $SiO_2$, particles were partially hydrophobized using hexylamine as an amphiphile. Different mole ratios of the SiC solution were added to the surface modified $SiO_2$ suspension. The contact angle was found to be around $73^{\circ}$, with an adsorption free energy $6.8{\times}10^{-12}J$. The Laplace pressure of about 1.25 ~ 1.6 mPa was found to correspond to a wet foam stability of about 80 ~ 85%. The mechanical and thermal properties were analyzed for the sintered ceramics, with the highest compressive load observed at the mole ratio of 1:1.75. Hertzian indentations are used to evaluate the damage behavior under constrained loading conditions of $SiO_2$-SiC porous ceramics.

Dielectric, Ferroelectric, Energy Storage, and Pyroelectric Properties of Mn-Doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 Anti-Ferroelectric Ceramics

  • Kumar, Ajeet;Yoon, Jang Yuel;Thakre, Atul;Peddigari, Mahesh;Jeong, Dae-Yong;Kong, Young-Min;Ryu, Jungho
    • 한국세라믹학회지
    • /
    • 제56권4호
    • /
    • pp.412-420
    • /
    • 2019
  • In this study, the dielectric and polarization properties of manganese (Mn% = 0.0, 0.1, 0.2, 0.5) doped (Pb0.93La0.07)(Zr0.82Ti0.18)O3 (PLZT 7/82/18) anti-ferroelectric ceramics were studied for energy storage capacitor and pyroelectric applications. A systematic investigation demonstrated that the electric properties of PLZT 7/82/18 ceramics are affected significantly by the Mn-doping content. A maximum dielectric constant of ~ 2,128 at 1 kHz was found for 0.1% Mn-doped PLZT ceramics with a low dielectric loss of 0.018. The bipolar polarization versus electric field (P-E) hysteresis loops were traced for all compositions showing a typical anti-ferroelectric nature. The breakdown field was found to decrease with Mn-doping. The energy storage density and efficiency were found to be 460 J/㎤ and ~ 63%, respectively, for 0.2% Mn-doped PLZT ceramics. The pyroelectric coefficient of PLZT ceramics shows an increase based on the amount of Mn-doping.

Thermally-Induced Atomic Mixing at the Interface of Cu and Polyimide

  • Koh, Seok-Keun;Choi, Won-Kook;Song, Seok-Kyun;Kook D. Pae;Jung, Hyung-Jin
    • 한국진공학회지
    • /
    • 제3권3호
    • /
    • pp.316-321
    • /
    • 1994
  • Rate of mixing of Cu particles to polyimide substrate at interfaces under different thermal treatments was analyzed by Rutherford Backscattering spectroscopy using 2.0 MeV He+ ions. T he mixing rate was a function of annealing temperature and time and was constant at afioxed temperature. The amount of mixing increased linearly with time and the mixing rate increased with temperature. The activation energy for interface mixing between Cu and polyimide was 2.6 kcal/mol. The X-ray studies showed the Cu(111) plane peak changed with annealing time at fixed temperature. The mixing of Cu to polyimide was explained with segmental motion of PI chain and with interaction between functional group of the chain and metal electron donor. The comparisons were made bewteen the mixing induced by ion irradiation and by thermal treatment. The various factors affecting the interface mixing are discussed.

  • PDF

Suppression of Shrinkage Mismatch in Hetero-Laminates Between Different Functional LTCC Materials

  • Seung Kyu Jeon;Zeehoon Park;Hyo-Soon Shin;Dong-Hun Yeo;Sahn Nahm
    • 한국전기전자재료학회논문지
    • /
    • 제36권2호
    • /
    • pp.151-157
    • /
    • 2023
  • Integrating dielectric materials into LTCC is a convenient method to increase the integration density in electronic circuits. To enable co-firing of the high-k and low-k dielectric LTCC materials in a multi-material hetero-laminate, the shrinkage characteristics of both materials should be similar. Moreover, thermal expansion mismatch between materials during co-firing should be minimized. The alternating stacking of an LTCC with silica filler and that with calcium-zirconate filler was observed to examine the use of the same glass in different LTCCs to minimize the difference in shrinkage and thermal expansion coefficient. For the LTCC of silica filler with a low dielectric constant and that of calcium zirconate filler with a high dielectric constant, the amount of shrinkage was examined through a thermomechanical analysis, and the predicted appropriate fraction of each filler was applied to green sheets by tape casting. The green sheets of different fillers were alternatingly laminated to the thickness of 500 ㎛. As a result of examining the junction, it was observed through SEM that a complete bonding was achieved by constrained sintering in the structure of 'calcium zirconate 50 vol%-silica 30 vol%-calcium zirconate 50 vol%'.