• 제목/요약/키워드: full state feedback

검색결과 93건 처리시간 0.024초

TOUSE: A Fair User Selection Mechanism Based on Dynamic Time Warping for MU-MIMO Networks

  • Tang, Zhaoshu;Qin, Zhenquan;Zhu, Ming;Fang, Jian;Wang, Lei;Ma, Honglian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4398-4417
    • /
    • 2017
  • Multi-user Multiple-Input and Multiple-Output (MU-MIMO) has potential for prominently enhancing the capacity of wireless network by simultaneously transmitting to multiple users. User selection is an unavoidable problem which bottlenecks the gain of MU-MIMO to a great extent. Major state-of-the-art works are focusing on improving network throughput by using Channel State Information (CSI), however, the overhead of CSI feedback becomes unacceptable when the number of users is large. Some work does well in balancing tradeoff between complexity and achievable throughput but is lack of consideration of fairness. Current works universally ignore the rational utilizing of time resources, which may lead the improvements of network throughput to a standstill. In this paper, we propose TOUSE, a scalable and fair user selection scheme for MU-MIMO. The core design is dynamic-time-warping-based user selection mechanism for downlink MU-MIMO, which could make full use of concurrent transmitting time. TOUSE also presents a novel data-rate estimation method without any CSI feedback, providing supports for user selections. Simulation result shows that TOUSE significantly outperforms traditional contention-based user selection schemes in both throughput and fairness in an indoor condition.

OPTIMAL PREVIEW CONTROL OF TRACKED VEHICLE SUSPENSION SYSTEMS

  • Youn, I.;Lee, S.;Tomizuka, M.
    • International Journal of Automotive Technology
    • /
    • 제7권4호
    • /
    • pp.469-475
    • /
    • 2006
  • In this paper, an optimal suspension system with preview of the road input is synthesized for a half tracked vehicle. The main goal of this research is to improve the ride comfort characteristics of a fast moving tracked vehicle in order to maintain the driver's driving capability. Several different kinds of preview control algorithms are evaluated with active or semi-active suspension systems. The road information estimated from the motion of the 1st road-wheel is adequate to make the best use of the preview control algorithm for tracked vehicles. The ride-comfort characteristics of the tracked vehicle are more dependent on pitching angular acceleration than heaving acceleration. The pitching motion is reduced by the suspension system with hard outer suspensions and soft inner suspensions. Simulation results show that the performance of sky-hook algorithms for ride comfort nearly follow that of full state feedback algorithms.

Inertia Space에서 우주 로봇의 적응제어 (Adaptive Control of Space Robot in Inertia Space)

  • 이주장
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.381-385
    • /
    • 1992
  • In this paper, dynamic modeling and adaptive control problems for a space robot system are discussed. The space robot consist of a robot manipulator mounted on a free-floating base where no attitude control is applied. Using an extended robot model, the entire space robot can be viewed as an under-actuated robot system. Based on nonlinear control theory, the extended space robot model can then be decomposed into two subsystems: one is input-output exactly linearizable, and the other is unlinearizable and represents an internal dynamics. With this decomposition, a normal form-augmentation approach and an augmented state-feedback control are proposed to facilitate the design of adaptive control for the space robot system against parameter uncertainty, unknown dynamics and unmodeled payload in space applications. We demonstrate that under certain conditions, the entire space robot can be represented as a full-actuated robot system to avoid the inclusion of internal dynamics. Based on the dynamic model, we propose an adaptive control scheme using Cartesian space representation and demonstrate its validity and design procedure by a simulation study.

  • PDF

고유구조 지정기법 : 연구동향과 전망 (A Survey on Eigenstructure Assignment)

  • 최재원;서영봉
    • 제어로봇시스템학회논문지
    • /
    • 제6권10호
    • /
    • pp.854-870
    • /
    • 2000
  • This survey paper presents and overview on eigenstructure assignment (EA) control design methodologies. EA is an excellent control design method which may be used to assign the entire eigenstructure(eigenvalues, and right or left eigenvectors) of a closed-loop linear system via a full state or an output feedback control law. In general, EA is well-sutied for incorporating classical specifications on damping, settling time, and mode or disturbance decoupling into a modern multivariable control framework. The purpose of this paper is to provide an extensive survey on EA control design methods that might serve as an introduction to a study on EA. The fundamental concepts and formulations for understanding EA problems are extensively described. The recently reported results on EA are also presented.

  • PDF

굴삭기 엔진/펌프 시스템의 모델링 및 제어에 관한 연구 (A Study on Modeling and Control of Excavator Engine/Pump System)

  • 곽동훈;하석홍;조겸래
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.29-41
    • /
    • 1992
  • According to the recent increase of demands for multi-function and economics on hydraulic excavator, it is required that excavator should have simple operation, higher and operational efficiency, however the modeling of engine/pump system of excavator is not prescribed by the paper. So, in this paper the modeling of engine/pump system of excavator is suggested by identification method from step response and verified effectiveness of identification system by comparing with experimental results which was conducted using PID controller. To improve the problem of parameter variation and modeling error in the system, sliding mode control was introduced and new switching surface was designed. This control algorithm was applied to a hydraulic excavator by simulation, and its effectiveness was verified, and the results of variable structure system for the excavator system using a output component was compared with that of full state feedback when load disturbances and system paramenter variation exist.

  • PDF

DRC 휴보의 4족 보행 제어 (Quadruped Walking Control of DRC-HUBO)

  • 김정엽
    • 한국생산제조학회지
    • /
    • 제24권5호
    • /
    • pp.548-552
    • /
    • 2015
  • In this paper, we describe the quadruped walking-control algorithm of the complete full-size humanoid DARPA Robotics Challenge-HUBO (DRC-HUBO) robot. Although DRC-HUBO is a biped robot, we require a quadruped walking function using two legs and two arms to overcome uneven terrains in the DRC. We design a wave-type quadruped walking pattern as a feedforward control using several walking parameters, and we design zero moment point (ZMP) controllers to maintain stable walking using an inverted pendulum model and an observed-state feedback control scheme. In particular, we propose a switching algorithm for ZMP controllers using supporting value and weighting factors in order to maintain the ZMP control performance during foot switching. Finally, we verify the proposed algorithm by performing quadruped walking experiments using DRC-HUBO.

확률적 가진압력을 받는 건축구조물의 최대응답 제한을 위한 선형이차안정기의 최적설계 (Optimal Design of Linear Quadratic Regulator Restrict Maximum Responses of Building Structures Subject to Stochastic Excitation)

  • 박지훈;황재승;민경원;조소훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.373-380
    • /
    • 2001
  • In this research, a controller design method based on optimization is proposed that can satisfy constraints on maximum responses of building structures subject to ground excitation modeled by partially stationary stochastic process. The class of controllers to be optimized is restricted to LQR. Weighting matrix on controlled outputs is used as design variable. Objective function constraint functions and their gradients are computed parameterizing control gain with Riccati matrix. Full state feedback controllers designed by Proposed optimization method satisfy various design objectives and their necessary maximum control forces are computed fur the production of actuator. Probabilities of maximum responses match statistical data from simulation results well.

  • PDF

A ROBUST VECTOR CONTROL FOR PARAMETER VARIATIONS OF INDUCTION MOTOR

  • Park, Jee-ho;Cho, Yong-Kil;Woo, Jung-In;Ahn, In-Mo
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.330-335
    • /
    • 1998
  • In this paper the robust vector control method of induction motor for the purpose of improving the system performance deterioration caused by parameter variations is proposed. The estimations of the stator current and the rotor flux are obtained by the full order state observer with corrective prediction error feedback. and the adaptive scheme is constructed to estimate the rotor speed with the error signal between real and estimation value of the stator current. Adaptive sliding observer based on the variable structure control is applied to parameter identification. Consequently predictive current control and speed sensorless vector control can be obtained simultaneously regardless of the parameter variations.

  • PDF

RVEGA SMC를 이용한 비선형 시스템의 안정화 제어 (A Study on the Stabilization Control of Nonlinear Systems using RVEGA SMC)

  • 김태우;조현우;송호신;이오걸;이준탁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2624-2626
    • /
    • 2000
  • The stabilization controls of coupled tank system and ball-beam system are difficult control tasks because of their high order time delay, nonlinearity and structural unstability. Fuhermore, a series of classical methods such as a conventional PID and a full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. Therefore, in this paper, in order to stabilize two representative nonlinear system mentioned above, a Sliding Mode Controller based on a Real Variable Elitist Genetic Algorithm(RVEGA SMC) was proposed.

  • PDF

이산 적응슬라이딩 모드 제어를 이용항 전력계통 안정화 장치에 관한 연구 (A study on the power system stabilizer using discrete-time adaptive sliding mode control)

  • 박영문;김욱
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.175-184
    • /
    • 1996
  • In this paper the newly developed discrete-time adaptive sliding mode control method is proposed and applied to the power system stabilization problem. In contrast to the conventional continuous-time sliding mode controller, the proposed method is developed in the discrete-time domain and based on the input/output measurements instead of the continuous-time and the full-states feedback, respectively. Because the proposed control method has the adaptivity property in addition to the natural robustness property of the sliding mode control, it is possible to design the power system stabilizer which can overcome both the minor variations of the parameters of the power system and the diverse operating conditions and faults of the power system. Mathematical proof and the various computer simulations are done to verify the performance and stability of the proposed method.

  • PDF