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Abstract

In this paper, dynamic modeling and adaptive control problems for a space robot
system are discussed. The space robot consists of a robot manipulator mounted on a
free-floating base where no attitude control is applied. Using an extended robot mode},
the entire space robol can be viewed as an under-actuated robot system. Based on
nonlincar control theory, the extended space robot model can then be decomposed
mlo two subsystems: one is input-output exactly linearizable, and the other is un-

izable and rep s an internal dy ics. With this & position, a normal
form-augmentation approach and an wgmentcd state-feedback control are proposed
1o facilitate the design of adaptive control for the space robot system against parame-
ter uncertainty, unknown dynamics and unmodeled payload in space applications. We
demonstrate that under certain conditions, the entire space robot tan be represented
as a full-actuated robot system to avaid the inclusion of internal dynamics. Based on
the dynamic model, we propose an adaptive control scheme using Cartesian space rep-
resentation and demonstrate its validity and design procedure by a simulation study.

1 Introduction

An increasing research interest has been directed Lo space robotice in both research and
experiments, such as space robot dy

ica, modeling, control, h hine interface,
high-level planning and scnsing systems. This is because robotic technology is beneficial
for space exploration in various aspeets. First, due lo inhospitable environment in space,
the usc of robols con minimize the risk thal astronants may face. Second, the use of
robots can greatly reduce the extra.vehicular activity of astronants and thus increase the
produclivity of the mission, Third, the use of robots offers high playload capacity and
operaling dexterity that astronants cannol provide, and possibilities to work on the ex-
peri that ase itive to human cont

Last, the use of robols provides nn
cconomical solution by eliminating various needs of human [acility and costly insurance.

The use of rabols in space, however, is a challenge problem in controlting both the rabot
and space vehicle which could be apacecraft, apace station, or satellite, and is referred to as
the "base” in Lhis paper. Due o the dynamic internclion of the robot and the base where
the robot arm is mounted, the motion of the robol may alter the base trajectory. On the
other hend, the robot end-cffector may miss the desired target due to the motion of the
base, especially when the mass and inertia moment of the robot arm are not negligible in
comparison Lo Lhe base,

Various rescarch has been directed lo the dynamics and modeling problems of the
space 1obot systemn. Long (1) di d the ki ic relationship in joint and incrlia
space and workspace of a space robot. Vala and Dubowsky [2], and Papadojoulous and
Dubowsky [3} introduced the concept of virtusl manipulator to scpresent the dynamics of
a space robot and made it possible to reproduce the ki ic bel

by the ki ica of & modificd fixed-base robot,

of 8 space robot

Relatively little atlention has been made to the control of the space robot system.
Xu ct al. [4] discussed the dynamic properlies of the space robot system and found that
dynamics of Lhe space robot system is nonlinearly parameterized, This causes fundninental
difference between the space robot and the fixed-base robot, und reaults in infeasibility of
most adaptive control and '

control ly used in robot control, In

their other paper {5], they proposcd an adaptive control scheme for a space robot system

when the hue is attitude-controlled. For the case of no atlilud tled base, nonli
blem must be idered and feasible control acheme is demeanded
against deled and un} dy which is highly possible in space applications.

This paper will focus on the dy i deling and adnptive control prabi of the

space robot system with & frec-floating base. We usc input-outpul exact ki
thcory to model and decouple the cnlire space tobot system, and conclude that the fun-
damental diference between Lthie space robot syslem and the fixed-base robot lies on the
existence of internal dynamics. Bascd on the model, we investigate the state-feedback con-
trol and adaptive control problems for the space robot system in & great detwl. Starling
from a general robot systemn analysis, we propose an extended robot model including the
base as & pseudo-robot and Lhe ren) robot arm mounted on the base. Using this model,
the entire robol system can be viewed as an under-actuated robot syslem with respect

Lo the virtual fixed frame on orbit. Then, the model is d posed into two subsy
one is input-outpul lincarizable, and the other is unlinearizable and represents an mlnm-l
dynamica of the syslem. Dased on the exi of trivial intemal dy ics in the
space robot system, we d trate the nonli 7 ization of the robot dy

To the nonii terization problem, u normal form: tion ap-
proach to the spacs robot conlrol sysiem is d. Using this app h, we furlher

develop an sugmented state-feedback control method to facilitate the adsptive control
design for the space robol system subject to parameter uncertainty. We propose an adap-
tive control scheme using Cartesian space representation to comply with customary task
specification and planning in moat space applicati To show he feasibility of the pro-
posed approach, a simulntion study is presented wnd the design procedure of the adaptive
controller is illustrated.

2 Dynamic Equation for General Robot Systems

A robot ipul is a typical high-di ional nonli dy

ic system. To derive
its explicit dynamic equation, we necd firat to determine Lhe total kinetic energy K of
the robot system nlong & motion trajectory. If ¢ = (g +++qa)T € R" represents the joint
position for an n-joint robot manipulator, then the kinctic energy is a quadratic form of

joint velocitics contained in §, i.e.,
K= %i’Wq’. m

The n by n matrix W in (1) is called the inertial mairiz of the robot system in joint space
representation, and is always positive-definile and symmetric.

It is well known thal molion of a closed dynamic system obeys the law of scarching
for the shorlest path Lelween two distinet terminal points on the system constraint sur-
{ace. Mathematically, this follows geodesic cquation [6,7). In dynamics, the motion of the
dynarnic system is governcd by Lagrange cquation. Lagrange equation is based on the
principle of the minimum action whicl is defined by an integral of the scalor Lograngian
function L(g(t),§(¢)) = K — P, the differeance between the kinetic energy and potential
caergy of the dynamic system.

Since space robol systems work under zcro-gravily environment, and if no elastic struc-
ture is involved, the potentinl encrgy P = 0, and L = K. In this case, the Lagrange

equation can be wrilten as
d (8K 8K
a\5) " @

where 7 = (r;,++,7,)7 is the external lorque/force vector, Substituting (1) inta (2), we
oblain

PNV S
Wit Wi—Wij=r (3)
wilh an n by n matrix Wy defined by
TR
4

W .
wemiroinZl=| . @
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-

In (4), 1 is the n by n identity matrix, and A @ B is Kronecker product of two arbitrary
mtrices A and D. Namely, if A is & k by I matrix {s;;} and B is an m by n inatrix, then

son(T 1)

anll - oD
which is a km by In motrix. It can also be scen that (A ® D)™ = AT @ B7.

Since the inertial matrix W of the robot system depends only on the position g, its

- ("“’) Wen. ®

Comparing (5) with the transpose of W, i.e.,

Wl = (”“') Ued,

time-derivalive must be
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itin clear that W # W] because 19§ # ¢®1. However, we can show by some manipulation
that

U®4d)=(i® 1)

Therefore,
W= Wi (6)
Using the above result, the Lagrange equation (3) can be reduced to
Wi+ (W]~ qWaimr, )
This version sliows ane to delermine the entire dy ics by puting only two

¥ and W,, and reduce the considerable computation time of .
Dy (6), we can rewrite WJ§ = }Wq' + §WJ§. Substituting it into (7) yields
L b . - .
Wi+ 3Wi+ J(W] ~ W)= Wit Cimv, ®
where we defing ' 1
Ce EW + E(W}‘ - W) 9)

It is clearly scen that the Arst term W in (9) is symmetric, and the sccond term
W] - W,) iv skew-sy Due Lo the property of skew-sy y, it is true that for
an arbitrary vector 5 € R*,

W] -Whemo.
Using this identlity, we can show that for any 5 € R*,
$TCxm ;JTWL (10)

is linear with respect
"

From ion (7), it is also k that the dy
to the inestial malsix W, i.a., the robot dy ics is linearly
property enables us to design adaplive control against paramecter uncertainly based on
linear structure. For the space robot system, however, this property is no longer valid, as
will be addressed in Iater sections.

To detennine the inertial matrix W of the robot system in joint space with s certuin
reference frame, we may first desive the system kinelic energy K which, based on the
definition in (1), must be & quadratic form of all p of §. Then, bining all
coefficients of the quadratic formula, we can find the inertial matrix 1. An alternative way
that is more efficient for compuler programming ulilizes the following compact formula [9]
and [10):

4. This important

.
LS H/AA )
it

In (11), U; is the 6 by 6 gencralized mess matriz for link j of an n-joint robot and is defined
by "

m;ily m;C] . .
where m; is the mass of link j, ®; is the inerlia tensor of link j with respect Lo the origin

n, (12)

of the jth coordinate frame, J; is the 3 by 3 identity, and C; = (¢;x) is a cross-product
operator of the centroid position vector ¢; = (c] ¢} ¢})7 referred Lo the jth frame and is
defined by
0 —c o
Cimeix)=| ¢ 0 ~—g
-4 g 0
The matrix J; in (11} is & 6 by n Jacobian matrix of link j, referred to as subjacobian J;

{9]. The subjacobian matrix can be d d via the foll

g P

1. For the first j linka out from the n-link robot, we form the jth submanipulator with
7 Joints from joint number 1 through joint number j, e.g., the nth submanipulator
will be the robot itsell;

. Using Carlesian velocily defined by (::‘ ). the linear velocity v; and the angular ve-
locily w; of frame j, determine the 6 bylj Jacobian matrix of the jth submanipulator
which must be projected onto frame j;

. Augment the resultant Jacobaln matrix by post-adding » 6 by (n — j) tero matrix
to form & 6 by n matrix that is called the subjacobian J;.

w

3 Extended Robot Model for the Space Robot Sys-
tem

We discussed the inerlial matrix and derived the Lagrange ation of dy

for » general robot system in the last scction. In this section, we will model a space robot

system a3 an extended robot model to facilitate the complexity of space robot system
leling as well oa ling intrinsic properties of internal d

Consider & apace robot system that is composed of a base which could be a space
_station or & space shuttle floaling in space and an m-joint robot srm mounted on the base.
I the reference orbit of the space station or the shuttle is considered as » wirtual fiaed
base, then the space station or shuttle has six degrees of freedom: hiree for translation
of its centroid and three for rotalion aboul the reference frame. Therclore, we can view
the base as Lhe end-effector of & 8-joint serial chain mechanism, ot "6-joint pseudo robot™.

[ tent disol

with respect to the

In this way, the floating base § [
fixed base. lucorporating Uhia G-joint pscudo-robot with the connected m-joint real robot
arm, we constitule an extended robot model having totally m 4 6 & n joints for the space
robot system. This extended robot model has its fized base on the space orbit and its end-
effector that performa desired taska referred to the fixed base. Therefore, the extended
robot model of Lhe space robot system is identical to the regular carth-based robot except
that the number of actusted joints is less than the number of its tolal joints. We can
therefore calegorize the space robot Lo be an under-actuated robot system.

3.1 The Incrtial Matrix of the Space Robot System

With the extended robol nodel, the inertial matrix W of the space robot system can
readily be determined by using (11). Since the extended robot system consists of 6 degrees
of freedom (d.o.f.) floating base and m (m = n— 0} joint rcal robot arm, the n by n inertial
malrix W can accordingly be partitioned into four blocks,
Wa W,
we (gt ). (13)
where W, is the 8 by 6 ic submatrix sttributed by the floating base, W,, is the
m by m symmetric block as an inertial matrix of the real robat arm with respect to the
fixed base, and W;, = W] is the 6 by m sub i ing the int tion between
the floating base and the robot arm.
Using the partitioned form (13), we can write the inversion of the matrix W by [11,12]

o (W' WA W W
were (T T o) a9
where
W,, =W, - WIwg'm,. (15)

It can be seen that W is invertible if both Wiy and W,, are noasingular. W, a3 an
upper-left block of (11), is positive-definite, symmetric, and thus invertible. Whereas for
the matrix W,, in (15) which is referred to as the effective inertial matrix of the sobot
arm, we can show that it is aJso  positive-definite symmetric matrix. To this end, first let

-y
T = (HE ). (16)

The product of W and T,, becomes
wn,.(“‘,’"). 0n

I 5 "

Thus, the matrix T}, defined in (10) is virtually a right { ing
W to W,,. Then, premultiplying (17) by T, we immedistely have

TIWT, = W,,.

Sincs 7}, containa an m by m identily matrix located at the bollom positian of (186),
rank({7},) = m, i.c, T\, is always full-ranked. Now, for an srbitrary non-zeso vector
¢ € R™, let 5 = 7,{ € R*. Obviously, 3 9 0 also. Because W > 0 is always true,
2T Ws w (TW,,( > 0. Therclore, we have shown that the cffective inertin matrix W,, is
slso positive-definite, symmetric, and is thus always invertible.

3.2 The Jacobian Matrix of the Space INobot System

The kinematic relationship of the space robol system can also be developed based on
the exlended robot model. Suppose Lhe 11 | Cartesian displ ¢ of the
robot end-cflector with respect o the fixed base is chosen as an output vector which is
a differentisble function of the joint position ¢, and is denoted by y = A{g) € R™. The
Jacobian matrix of y becomes

an
= - [ENFAN (18)

where J, = 8h/8q, is of m by 6 and J, = 8h/8g, is of m by m. Likewise, we can also
define an effective Jacobian matrix by

J, = Iy, = J, < AWG'W,.. (19)

The definili of the effective Jucobian matsix J, and the eflcctive inertial matrix W,,
show tliat the motion of the space robol arm mountcd on the base, unlike the fixed-base
robot, is delermined by not only the motion itself, but also the interaction of the motion
of the flosting base.

Since y = J§ and § = J§ + J4, we have

Ji=(h J)i=i-Js. (20)
This equation, however, cannot be uniquely solved for §, because J is now an m by n m
m + 8 matrix. It looks like & redundant robot ki ic problem, and § could have an
infinile number of solulions. But, in the space robot case, the joint accelerat
reatricted by ite dy i i A ding to (8), the dy ic equation for » space
tobol system can be wrilten by
wi+ci=(?). ()

where ¥ € R™ are joint torques only for the m-joinl robot arm mounted on Lhe floating
Lase. Once wa take the first six rows for both sides of (21), it can be observed that
the interaction between the robot arm and the base follows the principle of momentum
conservation, namely,

(W Wi)i = —(I 0)Ci. @2
This ion just the dynami int for §. Combining (22) with the
kinemalic equation (20), we can solve for § in terms of the Cartesian outpul accclerntion §
as long as Uhe entire coeflicient matrix of § is nonsingular. Therefore, this n by n cocfficient
matrix, denoted by @, can be suggested as an index to monitor control quality of the space

robot system, W
Wa u)
o= ) (23)
In fact, this control guality mairiz Q is a combination of spacc robot dynamics and kine-
malics,

By calculsting the determinant of Q defined in (23), we obtain [11,12}

det(Q) = det(Wis) - det(J, = JAWg'Wi,) = det(Wis) det(J,).

Since ¥y, is always nonsingular, the invertibility of J, is evidently equivalent to the invert-
ibility of Q. As will be seen in tha next section, the invertibility of J, is required for control
design. Therclore, the control qualily matrix @ determines whether the conlrol program
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could blow up. It has been shown by simulation study that at the kinematic lmguhruy
configuration of the robot anm, Le., &l points of det(J,) m 0, the control program may
not necesunrily brenk, since J, can atill be nonsingular at thase singuler points, lowever,
considering the extreme case, in which the base is %o heavy that Wy, tends Lo be rero
matrix and det(J,) s det{J,), the control program will break at the kinematic singularity,
Therefore, the kinematic singulasily thould at Jeast be avoided for a "safe” control process.

4 Exact Linearization and Internal Dynamics

A nonlinear sutonomous dynamic aystem, such as o general robot system ean always be
deled by the following stale tion and output

¢ = 10+ E o= 1)+ e
¥ = A=), (24)

where G(x) = {gi(2) -+ gu{x)). u and y are the system input and ouiput, respectively,
with the sne dimension, ie., u,y € R*. The extended robet model devcloped for the

space robol system defines n = § + m joint varinbles. The statc veclor =z is thus a 2n-

disncasional vcelor 3 =

. While the aystemn input u = (7 +-+ 1) conlnins all m
joint torquul{or:u of the robot anm if no renction wheel is considered. Since Carlesian
disp t {position snd orient ) provides of task specifications in most

lp‘a spplications, it is often sdopted for definition of the output funclion y = h{g).

With the Cartesisa displaccnent as the output function, two pomible cases must be
remarked:

1. If the number of robot joints m < G, then the sutput y has m independent compo-
nents representing m degrees of freedom of the robat end-effector with reapect to ity
fixed base.

2. U m > 6, Uie robot ix of kinemalic redundancy. In this case, we may still define the
output ¥ to be an m-di | vecior by ling m —~ 8 additional ind d
variables. As a matter of fact, (in — 8} is the degree of redundancy.

An the output is so defined Lo have Lhe same dimension as the input, based on (19}, the
fective Jacobian mateix J, b an m by m square matrix, and is inverlibie if and
only if the control quslily matrix Q is nonsingular.

Dased on the apace robot dynamnic equation given in (21), we can now deduce that

*'(g)“(-w';xcg)*“(;ﬁ-)(ﬁ)- : (25)

This exhibite that f{x) i» just the first term on the right-hand side of (253, snd G{z) ina
2n by m matrix formed by the last m columns of the matrix (W“)‘ where O is the n
by n zero matrix, Dased on (14) and (16}, we obtain

sa(ah) = (T;.?V,',‘)'

In order to study s mulli-input/multi-output (MIMO) nonli sysiem, first thing
is to find n relative degree, r, of the aystem at a point 3®. The relative degree revealy
how high order of vulput time-d ives I8 ab lenst required for uniquely inverting thy
system. In general, each output chanac! has its individual velue of the celative degree so
thet 7 = {ry, ¢ rn} if the systemn has totaily m oulput chanuels. The formal definition
of the selative degree for & MIMO system of the state equation {24) is a3 follows {13,14):

G(z) = {g{z) -

Definition 1 ¢ m {ry,<++,ry} is & relative degree (vector) of the aystem if

Lforsl1 SjE€m1SiSmandallk <rim1, and Jor all 2 in & neighborhood of
2%, Lie derivatives

L,Bhis) =9,

£ and the m by m msiris

Lo iigs) -
D{x)n( e . ”
LoLir ' halz) o Ly L tha(s)

Ly Ly~ (#) )

is nonsingular ot 3 = 3%,

In the shove definition, Lic derivative for a scolar funstion h,{(3} slong s vector field p is
defned via » dual product between the gradient of h; and the vector , i.c., Lohi(z) = 8y,
The mutrix D(z) is often called the decoupling matriz {14,15).

For » apace robot system, if Cartesian displacement of the robot end-effector is chosen ny
s output vecior, intuitively each output channel reflects an independent degree of frecdom
wad all channels are st equal levels. We may iherefore claim that ry = vy =0 &= Py, Under
the equal-relative degree condition, we can globally find ali r;'s for the robot system. Let
us first extend Lic desivative notation for & vector h{g) = (h{g} -+ Bl to

Lh(e)
f«"(‘l)"( E )
Lyhals)

It can be seen that each L, h{g} = 0, becauss in each column g; of G(z), the top n
camponents are all sero, while in the gradient of esch hi(g}, the last n components are
sero, Pusthermore, since L Ag) = (J O} = J4,

(Lo, LeMg) Lo Lb(g)) = (3 B0 = IDW = LW

The resultant m by m matrix is actually the decoupling matsix D(z) for the robot aystem.
Clearly, if det(Q) # 0, thea D{s) = JW3" is nonsingular so that the relative degree
¢y m oo m 5y m 2 Therefors, each output chanael of the space robot systess has the
relative degres of twe. Thie slsa cxplum why it is slways required to know up o the
desired output Jeration in Leaj y-tracking control design.

In & space robol sysiem, the sxtended robot model possesses n joint vurinbles, and
the stata vecior Is 2n-dimensional, whila the input u = v snd outpui y = L(g) are Lot

m = {n~G)-ditmeasiona! veclars, Decause ry = 2 in each output channcl, based an nonlinear
couicol system theory 14,15, there can be a 2m-dimensional subsystem which is input-
oulput ezactly Nnearisable, while the remaining 2n — 2m = 12-dimensional subsystem is

fincarizable by the inpul-output d: Such an unlinearizable subsystein is referred
to us the internal dynsmics. Unicss the base is also driven by attitude thrust jeis or
gyroscopic devices, the internal dynamics for the apace robol system lLias 32 dimensions.

For the 2m-dimensional linearizable partion, we may define & new stale vector (= ( ’v’).

and the new dynamic equation hies Drunovski canonical form shown as follows:

T o1

t=(1)=(6 ) (D+(2) @0
where I and O are the m by m identity and zero matrices, respectively, and v € R™ is
the new input vector, Clearly, this linear equstion is dent do § = v. M Vi
knowledge on all aystem parametera in available, the ceal rabot input u can be resolved in

lerms of the new input v,

e D) - He)) = alx) + Bz, (1)

where b(z) is an m-dimensional vecior defined by b(z) = Lih(x}), and a(s) = ~D~*(z)i(z)
and B(z) = D%(x). Equation (27} is known 83 slalic siate-feedback control [14].

Ta delermine the state-foedback fHici oz} and B(x), it is necded to obiain up
to the second order of Lie derivatives in D{z) and b{z). We may use an alternative way to
desive tha static feedback (27) through the dynamic equation (8} to get sid of e direct
computation of all Lie derivatives. Namely, sccording to (8) snd {25), we have

Ji+IWCim Jw-'( ) J W'y = Dix)u. (28)
Using v m § = J§ 4 J§ and substituting J§ m v = J§ inte (28) result in
a(z) = W, JSHIW-'Cq~ J§)
B(x) = W, (29}
‘Their counterparts, in » full-actuated fixed-base robet system that is exactly lincarizable,
can be determined by
a(z) = Cj-WJIti§
Bir) = WI {30)
Comparing {29) to {30), and noling the definitions of W,, and J, in {15) and {19), we
find that for & space robot sysicm, due to the exisience of internal dynamics, the property
of linear parameterization in oz} and f(x} is now no longer valid. The fact of the sbove
nonlinentized parsncterization has been revealed by suthiors in {5] and here we demonstrate |
Lhis fact in a different angle. The nonlinear parameterization poses a tough problem to fu-
ture adaptive contrel design, beesuse most of the :xutm; algorithms in nonlinear adaptive

control ares are bascd on ihe linearity of p ¥ To the g
nonlincarity problem, we will develop a normal form-augmentation ;ppronth in the

nexi section.

5 Normal Form«Augmentation Approach and Aug-
mented State-Feedback Control Model

Since Carlesian displacement of 2 robot end-effector can be specified by tasks in most
spute applicaiions, it is ideal to be chosen as & systun output function y = h{g) € ®™.
Furthiermore, 2n — 2m varisbles are unobservable, and conslitute the states of the internal
dynamics, The six joint positions in g of the floating base along with their time-derivatives
may be the best choice of stalet to rep the internal d: “Therelore, we now

define an sugmented output veelor y, = :) € R, and its time-desivative becomes

n ()= (2 5 ()= @

where [ is the 8 by 6 identity matrix and O in the 6 by m xero matrix, The u by n square
Jacobinn matsix J,, defined in {31) can be inverled by

(2 )

i J, in J m{J, J,)is nonsingular. Using §, = J,,§ + J.'q and substituting § = J;}(§s ~
Joed) into (21}, we obtain

Wagti - Wi+ ci=(0). (33)

Premultiplying (33) by J,,W~! yields

4o = i+ S wiCim LW (D). )
The shove equalion can be decomposed into two parts
i Ji+ I iCqm s () m SN, and (35
G+ OWCim(l YW (2) (36)
Clearly, (35} rep! the Ji izable subsystem of the space robot system, while (36)

describes the inlernal dy I the static state-feedback control law {27} with (29} is
applied 1o the subsysien (35), it can be immedintely obtained thet § = v, provided thet
ik parsineters are known. Therelore, if we define e{t) w y{} ~ y(1}, the output error
between the desired output y,(¢} and the actual trajectory y{t}, snd then define

v ot b+ ke, a7

the dynamics of the lineacizabls subsystem of the space robot is equivalent to
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i+kéithem0, “(38)

where k, and k, are constant control gains. Obviously, &, and k, should be chosen such that
the linear error equation (38) is Hurwits, i.e., sll roots of the corvesponding characteristic
cquation have negative real parts.

The internal dynamic equation (38) derived by the above augmentation way reveals
the d: ic bel of the Lase inl d Ly the robot arm due Lo the principle of
momentum conservation. This portion is unlinearizable and g, is unobservable through
the output channels defined at Cartesian level. Since g = (" ). wing § = (I O)f, we can
sec Lhat (36) is actually the ficsl six components of the enliqr'n dynamic equalion. Namely,

(I OX§+W~C4) = (I Q)W (3) (39)

Since the lete set of ions including the 1 d portion and the interna! dy-
namics portion is called the normal form {14,15), we refer to the definitions of y, and J,,
and the derivation of equation (33) as a normal form-augmentation approach.

By the concept of the sugmented square Jacobian matrix Jogs we can further define »
Cartestan inertial matrix as follows,

M=JTWI), (40)

'lhm ( )-r - ()" ']’ = [(-)7)™* for any noasingular square matrix (-). Thus, if J,, is
, the d ion (33) of the space robot system can be rewritten aa

Mi - Mg+ 3TCi= 357 (). )

Subsli g the inverse ki

§ = J'Vs into (41), we oblain & dynamic equation in
terms of the sugmented velocity g, and accelerstion §,,

Mi = MI 33+ IG5 = Miu 4 Gi = 237 (D), (“2)
where
CmIZTCIY = ML (43)
Based on the dy i ion (42) d in C ian space for the space robol
syslem, we can see that if one defines & new augmented input
w=i=(1), 0

then the static state-feedback control can be considered as
(3) = IE(Miy + (-MJ, I3 + JTCI ) = (M, + Gyu). (43

Obviously, Lo realize the sbove augmented state-feedback control model associaled
with the linearized augmented system given by (44) for tlie entire space robot, in addition
to the knowledge of ys and the invertibility of J,,, the following two conditions must be
mel:

1. Either desired qu, 1 and § can be known, or their actual values are measurable;

2. All the top six components of the resultant vector on the right-hand side of (45) are
equal to zero,

If these two conditions nre satisfied, then we can remodel the entire space robot lo be a
Jull-actusted rebot system. All the six joints in the pseudo robot model of the floating
base can be ived Lo bave molor-drivers, bul e zero lorques sl every sampling

time. With such s new model, we can utilize many conventional control algorithms that
are applicable to regular (full-actuated) robot systems Lo deal with the space robot control
problem, such as adaplive conicol de:

In summary, when we eztand the input vector from v € R™ to (2) € R, and the

oulpul vector fromy € R™ oy, = (v) € R*, the entire space robot system becomes
a full-actuated robot system as if the internal dynamics disappears, as long as the above
menlioned requirement can be satisfied,

6 Adaptive Control of the Space Robot System Using
Cartesian Space Representation

As discussed in the previous sections, the state-feedback coefficients a(z) and f(z) can be
determined by equation (29) for u space robot system. Due to the nature of the under
sctuated system, both a(z) and A(z) are IH functions of physical p of
robot links. This results in difficulty for sdaptive control realisation against
uncertainty. In this section, we will demonstrate that the normal form-augmentation
approach expressed in (31) and (33) and the augmented state-feedback control (45) can
the nonli Lerizati ptobhm Let us start with the assumption that
@, 6 and §; are ble. Under this p the d output error funclion

between the desired (y )¢ = (w) and the actual y, = (:.) can be wrilten a3 ¢, =

(Vodi=ya = (0) Let an extended augmented error vecler be defined as

st he, = (é *ok") ex, A (8)

where ¢ = y, ~ y € R™ is the output erros funclion, and k, > 0 is the constant gain. Then,
we define a reference output velocity # and a reference outlput acceleration 1j as follows,

- (l?‘ *".l"-‘) and f= (i‘ ;"‘-"). “n
Thus, comparing (47) with (46), we have

smnjo snd i=(FHF)mi-i (8

Let us now define E m §s7 M to represent an extended error energy, snd then,

E-a’Ml+2 'MJ-;’M»-J'Mv.'#-it Ma. (49)
The second term on the right-hand side of (49) can be delermined by (42),
-t {0
—TMi. = a"Cy =TI (u) . (50)
Jerivative for the Caslesisn inertial

In order to derive the third term, we first toke ti »
matrix (40), and then substitute M into this term. Then, recalling (10), we obtain

TM. - ="M, a+5:fr'w1'

a4 aTITCI)s
= 37Gs = TGy~ sTGyu. (51)
Finally, (49) turns out lo be
Em ™M +47Gn=sTIT (3) . (52)

We now define & following coatrol law
; H(é + &,
(3) . W3 (Cadit = Waditdudiin + 5 (ME 4 1)
! ky

TiMai +Gan + (TE D), (3)
where W., and C., respectively, represent the inertial matrix W and the matsix C =
IW + J(W] = W,) in the model plant, and sccordingly,

Mo =0 TW I
and
Ga = JTCIS - M3

In (53), / is an m by m positive-definite, symmetric constant weighting matrix. The
vector § € R* in the control law (53) plays a key important role in realizing the second
dition for the d slate-feedback control p d in the last section. In fact,

since
5= (F o)

the control law (53) can be splitted inlo two portions,

0 = (Wi Wadad3'q+ (I NG+ ITH(E +ke)+8 and (54)
u w (W Wo)adii+ (JT 0)Gan + JTH(E + kee). (85)

It is clear that since § is only contained in (54), § can simply be evalualed to ensure that
(54) vanishs. Namely, the second condition of the ted state-feedback control can
always be satisfied without ffc the control d u d d by (55). Therefore,
the conteol law (53} is feasible.

Let ¢ be the parameter column vector that lists all real physical objective parameters
to be identified. Let £ bo the corresponding parameter vector for the model plant of the
space robol system. Now, substituting the coatrol law (53) into (52), we furtlier obtain

£ = =M+ (G- G- (FEFEI)
- n"Y‘—a’(”(é:k")). (36)
where )
Yé = (M- Ma)i +(G~Galn,

independent of the objective
on vector between the real

and Y is a matcix function of ¢, 4, G, and yq, 4 and s, and is
physical parametess, while ¢ = § — £, is the parameter de
plant and the model plant.

We now define an adaptation law for the space robot system,
$m -TY7s, (57)

where I, referred 10 aa the adaplation gain matriz, is a constant positive-definite, sym-
metric matrix with the same dimension as § or ¢. Then, a following Lyapunov function
can be adopted to justify tho stebility of the apace robot system with the control law (53)
and the adaptation law (57),

V,=mE+ ¢Tr-'o - -a’Mn +3 f’l‘"& (58)

Clearly, V, > 0, and V¢ = 0 only at the equilibrium point of this sdaptive system, i.e.,
( . ) = 0 and ¢ = 0. Toking time-derivalive for V‘,, lllve

V. = E+4TT77¢ X
[ S ("(‘}"‘-‘)) ~TYé

- (i + ko) H(E+ ko) ‘ (39)

which is negative-definite and is sero only at the equilibrium point (:) -,

Therefore, the control law (53) and the adaptation law (57) asymploticall stabilize
the cntire space robot systemn to track a desired trajectory (or to approach a desired
point, as a special case of the trajectory-tracking) described in terms of ye, ya and §q.
Since J;;' is heavily involved in the control law and adaplation law, the stability slso
requires thnt J, be nonsingular due to the definition of J,, in (31) end its inversion (32).
Whiereas the feasibilily of the above adaplive control law depends on whether the desired
joint trajectory of the pseudo robot sepresenting the floating base is available, or s, ¢
and § sre measurable. In general, it is not 20 casy to determine the desired g, and its
time-derivatives kinematically bascd on  given desired Carlesian trajectory, because all
joint vasiables arc also ined by the dy (22). Thus, with absence of
the desired joint trajectory of the pseudo robot, the Aosting base must be equipped with

" sensars capable of moniloring not only the base controid position, orientation and theis
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locities, but aleo i
we have to pay for

their )

ing lincar p

This may be intorpreted as the coat
in order to conirol Lhe apacé wobot

system adnplively against parameter uncertainty.

7 Simulation Study

We now discuss a simulation study to verily the sugmented state-feedback control model
and adaplive control scheme developed in previous seclions. The space robot sysiem to be
simulated is » robot arm with two revolute joints mounted an & fres-motion base moving
on 2D plane. Since a rigid body on 2D plane possesses 3 d.o.f.: two for ils centroid position
and one for the orientation about the axis normal to he plaue, the base can be viewed as
the "end-effector” of a three-joint "pseudo robot”. We consider that the first two joints
of the pseudo robol are prismatic along iwo sliding axes that sre pecpendicular to each
other, while the third joint is revolute about the axis normal to the 2D plane. Dased on
the pseudo robot model, the total mnss and inertin moments of the flonling base are only
concentrated on the third link, and the first two links have zero masses. Combining with
the two-joint planar robot arm, the entire extended robot model has totally five joints, i.e.,
neSand m=2

The system input u € R? contains two torques of joint 4 and joint 5. Whereas the
oulput y = A(g) € R? represcuta translational motion of the robot arm end-effector with
respect Lo the orbit fixed base. A schematic diagram of Lhe space robot system for the case
study is shown in Figure 1. The Denavit-Hartenberg {D-H) table including joint vasiables
and link length parameters of the extended robot model is also given in Figure 1.,

We can derive the inertial matrix W and dynsanic equation for this planar space robot
system via {11), (4) and (21). As we have acen, the adaplive control scheme developed in
the preceding seclion sssumes that only the dynmnic paramcters appearing in the inertint

matrix W are to be identificd, and those geometric parameters, such as the robot link

dinate a; involved in the Jacobian matrix J

lengths aq and a5 and the base centroid
are not included for adaplation. Moreover, in order to more efficiently illusteate the design
procedure, we assume that the centroid of each rabot link liss ouly ona non-gero coordinate
which is along x-axis of its individual coordinate frame, denoted by ~#; for i = 4,5. We
also define the remaining length of each link as I; = a; — £;. Under such condilions, each
inertia tensor @; of the base and two robot links is reduced to be diagonal and only the
incrtia moment sboul z-axis will be used, i.e., m;k%;, where k,; is Lhe gyration radius about
s-axis and m; is the mass of link i.

Therefore, totally eight parameters involved in W are to be identified. The eight-
dimensional parameter vector { can thus be defined as

{ = (my my my mykdy m‘kf‘ m;kZ. mdly mlll)1~ (60)

According to Lhe definition of ¢, the inertial mairix IV, and W, and W can be decomposed

to
[]

Wea

Wi, w.',“ie.»wj and w.tgiw‘, (61)
[t (1)

where each W', Wj and each W' are independent of £ and are the coeflicient matrices of
each §. Once the symbolic form of each W' is derived, the corresponding W; and W can
be computed by (4) and (5} so that the mattix C can further be found via (9).

For the space robol kinematics, the output vector is defined by using the robot arm
tip position with respect to the fixed base,

v=hig) = (d: ~ 8383 = a4y — auau) .

dy +a3cs + agese + arcas (62)

Taking pastial derivative of y = h(g) willi respect to g, we obtain the Jacobinn matrix of
the robot,

(1o

=)0y 43¢ = GsC3s “04fa — AsCan

—ﬂlc:m) =(h I

—8130

63
=335 84836 = Ay —0e334 — Gpdaes ()

where 5; and ¢; are sin6; and cos 6, 3;; and c;; are sin(d; + 8;) and cos(é; + 6;), and 2,
and c;;s are sin(6; 4 6; + 6.} and cos(8; + 8, + 0.), respectively, for i,j, % = 3,4,5. Once J
is compuled, we can form J,, and J ! by (31) and (32), and further determine the 5 by 8
matrix V required by the adaptation law (57) through (40), (43) and (56). .

In the simulation study, the desired trajectory of the space robot tip point is defined
to be a circle with radius R = 1.2 and a constant spced w = 1.5 rad./sec. in clockwise
direction. We sel a large initial iracking error for both y and § to simulate how the space
robot control system can catch up Lo the desired trajectory after interruption by some
disturbance. The real plant parameters in vector (60) are fixed to be

€=(10 2 1 375 6 3 3 15).

Al the model planl parameters in {. used for adaptive control simulation are simply
defined to be 1. Moreover, the adaptation gain is defined by a following diagonal matrix:

T = ding(2, 0.1, 0.1, 4, 0.1, 0.1, 0.2, 0.2}.

The control gains are set to be &, w 16 and H = 10 for the simulation study.

As the simulation results, Figure 2(a) shows the desired and actual trajectorics of the
robot Lip point A, and Lhe traces of the base centroid C and the fourth joint center (the
top point of the base) B in the case without parameier deviation. Figure 2(b) plots the
same trajectories in Lhe case with p d but without adaplive cantrol. In
Figure 3, part (a) shows the resultant trajectories with parameter adaptation, and past (b)
gives the input (two joinl torques) plot versus time in the same condition. The tracking
errora versus time in the cascs with and without adaptive control are shown in Figure 4.
Figute 5 d two p ter adapiation in the apace robot system with
the adaptive control scheme. All these resultant plots verily that the proposed modet and
adaplive control for the space robot system are feasible and eflective.
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8 Conclusion

The adaptive conlrol problein of a space robot system as the base is frecly floaling in
space has been discussed. By applying an exiended robot model on the space robot aystem
and through a nonlinear control system analysis, we ficst concluded that the fundamental
difference between the space robot and the fixed-base robot liea on the existence of the
non-trivial internal dynamica. Under the extended robot model, the space tobot system
can be categorized to a class of under-nctuated robol systems. Then, we applisd the
input-output exact lincarization procedure to the space robot system, and found that a

bsy with double di of the inpul or the output is exactly lincarizable, while
the ini bsyst li izable. The unli part is referred to as the
internal dynnmics.

It has also been shown that in the space robol system, the linear parsmeterization in
the state-feedback control law is no longer valid due to the under-actuated nature. The

proposed normal form-aug P h is feasible for overcoming the nonlinearity
of os any adaplive control sclieme is implemenled for the space robot
system. Dased on the normal f i h, we further developed an aug-

mented state-feedboack control model. Using this control model and under two conditions
being all satisficd, the entire extended robot model of the space robot system can be remod-
cled as a (ull-actuated robot system as if the internal dynamica disappears. In this way, the
parametcrizalion nonlinearily problemn can be eliminated, and the adaptive control sclieme

developed in the paper b Jizabl
A indicated above, one of the Lwo conditions is Lhat the d state-feedback
control model requires all joint p i and lerati

pscudo-robot model to be measurable. This may be explained by the fact that the motion
vasiables of thic floaling busc constitute the states of the internal dynamics, and they are
“unobservable through all Lhe outpul channcls defined in Cartesian space.

Under the assumption of messucablo base trajectories, we have shown that the devel-

oped adaptive control scheme stabilise
the entire space robot system Lo track a given trajeciory or to reach & desired point.

p ted in C ian space can asymptoticall

Through the simulation study, it is evidently seen that even il the mass ratio between
the base and the robot arm is amall, the tracking can still be achieved, The
control program, however, will blow up when the Jacobisn block J, approaches its singu-
larity along the actual trajectory. Moreover, the simulation results hiave also shown the
feasibility and offcctiveness of the adaptive control scheme developed. Based on the work
presented in this paper, we are currently focusing on (he following resesrch topics:

¥ i 1 nriih

* How to reduce the d control

P

of the prop

for

o Whal happens if the robot and/or the base is of light-weight and presents certsin
degrees of flexibilily for energy efficiency and orbit life concerus [16].
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