• Title/Summary/Keyword: full scale shear test

Search Result 125, Processing Time 0.024 seconds

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing (Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구)

  • Park, Jin Young;Jang, Kwang-Seok;Lee, Hong-Pyo;Lee, Young Hak;Kim, Heecheul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.533-540
    • /
    • 2012
  • Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.

Shear Behavior of R.C. Beams according to Increase of Concrete Compressive Strength (철근콘크리트 보의 고강도화에 따른 전단거동에 관한 연구)

  • 윤영수
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.6
    • /
    • pp.190-198
    • /
    • 1994
  • Th~s paper presents the shear behavior in reinforced normal, medium and high strength con crete beams due to the Increase of concrete compressive strength. Twelve shear tests were con ducted on full scale beam speclrnerls havmg concrete compressive stlengths of 360, 670 and 873kg/$cm^2$. Different amounts of shear reinforcement as a variable were investigated according to ACI 318 89. The shear responses are discussed in terms of the shear capacity. the ductility and the reserved strength. The prediction and comparison with the test results are also presented.

Shear Capacity Curve Model for Circular RC Bridge Columns under Seismic Loads (지진하중을 받는 철근콘크리트 원형교각의 전단성능곡선 모델)

  • Lee, Jae-Hoon;Ko, Seong-Hyun;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.1-10
    • /
    • 2006
  • Reinforced concrete bridge columns with relatively small aspect ratio show flexure-shear behavior, which is flexural behavior at initial and medium displacement stages and shear failure at final stage. Since the columns with flexure-shear failure have lower ductility than those with flexural failure, shear capacity curve models shall be applied as well as flexural capacity curve in order to determine ultimate displacement for seismic design or performance evaluation. In this paper, a modified shear capacity curve model is proposed and compared with the other models such as the CALTRANS model, Aschheim et al.'s model, and Priestley et al.'s model. Four shear capacity curve models are applied to the 4 full scale circular bridge column test results and the accuracy of each model is discussed. It may not be fully adequate to drive a final decision from the application to the limited number of test results, however the proposed model provides the better prediction of failure mode and ultimate displacement than the other models for the selected column test results.

Modeling of non-seismically detailed columns subjected to reversed cyclic loadings

  • Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.163-178
    • /
    • 2012
  • A strut-and-tie model is introduced in this paper to predict the ultimate shear strength of non-seismically detailed columns. The validity and applicability of the proposed strut-and-tie model are evaluated by comparison with available experimental data. The model was developed based on visible crack patterns observed on the test specimens. The concrete contribution is integrated into the strut-and-tie model through a concept of equivalent transverse reinforcement. To further validate the model a full-scale non-seismically detailed reinforced concrete column was tested to investigate its seismic behavior. The specimen was tested under the combination of a constant axial load, $0.30f_c{^{\prime}}A_g$ and quasi-static cyclic loadings simulating earthquake actions. Quasi-static cyclic loadings simulating earthquake actions were applied to the specimen until it could not sustain the applied axial load. The analytical results reveal that the strut-and-tie method is capable of modeling to a satisfactory accuracy the ultimate shear strength of non-seismically detailed columns subjected to reserved cyclic loadings.

Evaluation on Shear Behavior of Double-tee Dap-ends with the Least Depth from Optimization Proces (최적이론에 의하여 설계된 최소 깊이 더블티 댑단부 전단거동 평가)

  • 유승룡;김대훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.43-54
    • /
    • 1999
  • Shear tests are performed on four full-scale 12.5 m proto-type models, "least depth double tee," which are resulted from the optimization process. Domestic superimposed live load regulation, domestic material properties which is available to product. Korean building code requirements, construction environments and economy are considered as the main factors to establish the process. All of the specimens tested fully comply with the shear strength requirements as specified by ACI 318-95. The research has shown following results. 1) The development length requirement of ACI 318-95 does not seem a good predictor for the estimation of bond failure in a beam with the strands below the supports. 2) The load required for the first initial coner cracking in the dap end and first web shear cracking does not seem to have any relation with the dimension and shear strength of the section in the test beams. 3) The strand slip has a direct relationship with the web shear cracking. However, the coner cracking in the dap end does not give any help for the slip in anchorage. 4) Use of whole area for bearing steel at the bottom of dap end is desired for safe bearing pressure design in the precast prestressed double tee beams. 5) The deflection of beam influences directly on the amount of strand slip at the anchorage after initiation of it, and relationship between them are very linear.

Evaluation on Flexural Performance of One-Way Hollow Slabs according to the Shear Reinforcement (전단보강에 따른 일방향 중공슬래브의 휨 성능 평가)

  • Yu, Yu-Jin;Seok, Keun-Young;Kim, Gee-Cheol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • The purpose of this study is intended to determine the validity of shear reinforcement by evaluating flexural performance in the hollow slab. The hollow slab is relatively light and second moment of inertia is large. Due to these characteristics, it can be used to slab system efficiently. Therefore the prediction of the structural behaviors is very important because of decrease of shear and flexural strength which is caused by hollow section of slab interior. In this study, the flexural test were performed to analyze the flexural capacity of the hollow slab w/ or w/o shear reinforcement. A total of six full scale specimens were tested. These specimens have three cases of reinforcing bar ratio, 0.009, 0.018 and 0.024. To verify the flexural behavior such as ultimate load, load-deflection and crack pattern, the flexural experiment were tested by using loading frame. Experimental results have shown that the flexural behavior are depend on the reinforcing bar ratio. Also the hollow slab with shear reinforcement have shown flexural behavior. Therefore, it is appropriate that the hollow slab is reinforced by shear reinforcement to improve the flexural performance of the hollow slab.

Assessment of seismic demand and damping of a reinforced concrete building after CFRP jacketing of columns

  • Inci, Pinar;Goksu, Caglar;Tore, Erkan;Binbir, Ergun;Ates, Ali Osman;Ilki, Alper
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.651-665
    • /
    • 2022
  • While the lateral confinement provided by an FRP jacket to a concrete column is passive in nature, confinement is activated when the concrete expands due to additional compression stresses or significant shear deformations. This characteristic of FRP jacketing theoretically leads to similar initial stiffness properties of FRP retrofitted buildings as the buildings without retrofit. In the current study, to validate this theoretical assumption, the initial stiffness characteristics, and thus, the potential seismic demands were investigated through forced vibration tests on two identical full-scale substandard reinforced concrete buildings with or without FRP retrofit. Power spectral density functions obtained using the acceleration response data captured through forced vibration tests were used to estimate the modal characteristics of these buildings. The test results clearly showed that the natural frequencies and the mode shapes of the buildings are quite similar. Since the seismic demand is controlled by the fundamental vibration modes, it is confirmed using vibration-based full-scale tests that the seismic demands of RC buildings remain unchanged after CFRP jacketing of columns. Furthermore, the damping characteristics were also found similar for both structures.

Experimental investigation of shear connector behaviour in composite beams with metal decking

  • Qureshi, Jawed;Lam, Dennis
    • Steel and Composite Structures
    • /
    • v.35 no.4
    • /
    • pp.475-494
    • /
    • 2020
  • Presented are experimental results from 24 full-scale push test specimens to study the behaviour of composite beams with trapezoidal profiled sheeting laid transverse to the beam axis. The tests use a single-sided horizontal push test setup and are divided into two series. First series contained shear loading only and the second had normal load besides shear load. Four parameters are studied: the effect of wire mesh position and number of its layers, placing a reinforcing bar at the bottom flange of the deck, normal load and its position, and shear stud layout. The results indicate that positioning mesh on top of the deck flange or 30 mm from top of the concrete slab does not affect the stud's strength and ductility. Thus, existing industry practice of locating the mesh at a nominal cover from top of the concrete slab and Eurocode 4 requirement of placing mesh 30 mm below the stud's head are both acceptable. Double mesh layer resulted in 17% increase in stud strength for push tests with single stud per rib. Placing a T16 bar at the bottom of the deck rib did not affect shear stud behaviour. The normal load resulted in 40% and 23% increase in stud strength for single and double studs per rib. Use of studs only in the middle three ribs out of five increased the strength by 23% compared to the layout with studs in first four ribs. Eurocode 4 and Johnson and Yuan equations predicted well the stud strength for single stud/rib tests without normal load, with estimations within 10% of the characteristic experimental load. These equations highly under-estimated the stud capacity, by about 40-50%, for tests with normal load. AISC 360-16 generally over-estimated the stud capacity, except for single stud/rib push tests with normal load. Nellinger equations precisely predicted the stud resistance for push tests with normal load, with ratio of experimental over predicted load as 0.99 and coefficient of variation of about 8%. But, Nellinger method over-estimated the stud capacity by about 20% in push tests with single studs without normal load.

Proof Test of a 750kW Wind Turbine Blade (750kW 로터 블레이드 인증시험)

  • Kim, Myoung-Jin;Sung, Dae-Young;Park, Byoung-Jun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.328-331
    • /
    • 2008
  • For the purpose of verifying the calculation, the rotor blade shall be subjected to test for the natural frequencies and the static loading within the scope of the assessment. This paper presents a full scale static test procedure of the rotor blade for certification by GL. This blade model is manes as KM24 designed for IEC type IA. The test and calculation values are all most similar. Also there is not founded any marks of cracks or buckling at the shell, and bonding area is T/E, L/E and shear web. Therefore, the test is successful and the rotor blade is satisfied the safety requirement at the maximum design load.

  • PDF

An Experimental Study for Development of Details and Design Method of CFT Column-to-RC Flat Plate Connections (콘크리트 충전각형강관 (CFT)기둥과 철근콘크리트 무량판 접합부 상세 및 설계법 개발을 위한 실험연구)

  • Lee, Cheol Ho;Kim, Jin Won;Oh, Jeong Gun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.481-490
    • /
    • 2005
  • This paper summarizes the full-scale test results on the CFT column-to-flat plate connections subjected to gravity loading. CFT construction has gained wide acceptance in a relatively short time in domestic building construction practice due to its various structural and construction advantages. Constructing an underground parking floor as a flat plate system is often regarded as essential for both cost savings and rapid construction. Efficient details for CFT-column-to-flat-plate connections have not been proposed yet, however, and their development is urgently needed. Based on some strategies that maximize economical field construction, several connecting schemes were proposed and tested based on a full-scale model. The test results showed that the proposed connection details can exhibit punching shear strength and connection stiffness comparable to or greater than those of their R/C flat plate counterpart.