DOI QR코드

DOI QR Code

Experimental Study on the Temperature Dependency of Full Scale Low Hardness Lead Rubber Bearing

Full-scale 저경도 납면진받침의 온도의존성에 대한 실험적 연구

  • 박진영 (유니슨이테크(주) 기술연구소) ;
  • 장광석 (유니슨이테크(주) 기술연구소) ;
  • 이홍표 (한국수력원자력 중앙연구원) ;
  • 이영학 (경희대학교 건축공학과) ;
  • 김희철 (경희대학교 건축공학과)
  • Received : 2012.11.09
  • Accepted : 2012.11.28
  • Published : 2012.12.31

Abstract

Rubber laminated bearings with lead core are highly affected by changes in temperature because key materials which are rubber and lead have temperature dependencies. In this study, two full scale LRB(D800, S=5) are manufactured and temperature dependency tests on shear properties are accomplished. The shear properties at the 3rd cycle are used at $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$ respectively. The double shear configuration, simultaneously testing two pieces, is applied for compression shear test in order to minimize the friction effects due to the test machine, described in ISO 22762-1:2010. Characteristic strength, post-yield stiffness, effective stiffness, equivalent damping ratio are estimated and presented coefficient due to the temperature changes.

납코어가 삽입된 적층고무받침은 주요 재료가 온도에 대한 의존성을 보유하고 있으므로 온도 환경이 장치의 성능에 미치는 영향이 적지 않다. 따라서, 본 논문에서는 대표적인 면진장치인 납면진받침에 대하여 실규모 장치를 제작하고 온도변화에 따른 강성 및 감쇠 특성변화에 대하여 실험을 통하여 분석하고 평가하였다. 실물 크기의 납면진받침을 사용하여 $-10^{\circ}C$, $0^{\circ}C$, $10^{\circ}C$, $20^{\circ}C$, $30^{\circ}C$, $40^{\circ}C$의 온도 조건에 대하여 ISO22762:2010에서 제시하고 있는 특성시험법을 적용하여 수직강성 및 수평특성에 대하여 의존성 경향을 파악하였다. 또한, 면진받침 설계 시 주요한 평가지표로 사용되는 2차강성 및 특성강도에 대하여 해외 제조사에서 제시하고 있는 온도보정식과 시험결과를 비교하였으며 수직강성에 대한 온도의존 경향을 파악하였다.

Keywords

References

  1. Cho, C.B., Kwahk, I.J., Kim, Y.J. (2008) An Experimental Study for the Shear Property and the Temperature Dependency of Seismic Isolation Bearings, Journal of the Earthquake Engineering Society of Korea, 12(1), pp. 67-77. https://doi.org/10.5000/EESK.2008.12.1.067
  2. Lee, D.H., Hwang, I.S. (2011) Analysis on the Dynamic Characteristics of a Rubber Mount Considering Temperature and Material Uncertainties, Computational Structural Engineering, 24(4), pp.383-389.
  3. Chung, G.Y., Ha, D.H., Park, K.N., Kwon, H.O. (2002) Experimental Study on Characteristics of Low Hardness Rubber Bearing, KSCE Journal of Civil Engineering, 22(6), pp.1295-1307.
  4. ISO 22762-1 (2010) Elastomeric seismicprotection isolators, Part 1:Test methods.
  5. ISO 22762-3 (2010) Elastomeric seismicprotection isolators, Part 3:Applications for buildings Specifications.
  6. JSSI (2009) 免震部材標準品リスト, 日本免震構造協会.
  7. Kelly, J.M., Konstantinidis, D.A. (2011) Mechanics of Rubber Bearings for Seismic and Vibration Isolation.
  8. Komodromos, P. (2000) Seismic Isolation for Earth-Quake Resistant Structures.
  9. Kulak, R.F., Hughes, T.H. (1993) Frequency and Temperature Dependence of High Damping Elastomers, SMiRT-12, pp.243-248.
  10. Roeder, C.W., Stanton, J.F., Feller, T. (1990) Low-Temperature Performance of Elastomeric Bearings, Journal of Cold Regions Engineering, 4(3), pp.161-201. https://doi.org/10.1061/(ASCE)0887-381X(1990)4:4(161)
  11. Skinner, R.I., Robinson, W.H., McVerry, G.H. (1992) An Introduction to seismic isolation.
  12. Yakut, A., Yura, J.A. (2002) Parameters Influencing Performance of Elastomeric Bearings at Low Temperatures, Journal of Structural Engineering, 128(8), pp.986-994. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(986)