• 제목/요약/키워드: full bridge inverter

검색결과 295건 처리시간 0.025초

MOSFET를 사용한 공진형 고주파 인버터에 관한 연구 (A STUDY ON THE RESONANCE TYPE HIGH-FREQUENCY INVERTER USING MOSFET)

  • 이달해;오승훈;김동희;유동옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 하계학술대회 논문집
    • /
    • pp.405-408
    • /
    • 1990
  • This paper is study on resonance type high-frequency inverter using self turn-off devices. The power conversion circuits adopt full-bridge of voltage-fed type. IN the circuit analysis, resistance load was used to estimate of characteristic.

  • PDF

A Signal Anti-reduction System for Power Line Communication

  • Ko Jong-Sun;Kim Hyun-Sik;Hong Soon-Chan
    • Journal of Power Electronics
    • /
    • 제4권4호
    • /
    • pp.256-260
    • /
    • 2004
  • A new communication system is suggested using a single-phase full-bridge inverter with high efficiency ferrite core for power line communication (PLC). The conventional system has a decreasing signal voltage problem due to internal resistance. The proposed system has almost zero internal impedance and replaces a linear amplifier.

태양광 인버터 회로구조에 따른 누설전류 비교 (Comparison of Leakage Current in Various Photovoltaic Inverter Topologies)

  • 윤한종;조영훈;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2016년도 전력전자학술대회 논문집
    • /
    • pp.105-106
    • /
    • 2016
  • In low-power grid-connected photovoltaic(PV) system, Single-phase transformerless full-bridge inverter is commonly used. However in transformerless photovoltaic application, the ground parasitic capacitance created by grounding between PV panels and ground. This ground parasitic capacitance inject additional current into the inverter, these currents cause electromagnetic interference problem, safety problem and harmonics problem in PV applications. In order to eliminate the ground current, This paper propose various inverter topologies in PV applications. These proposed inverter topologies are verified through simulation using PSIM.

  • PDF

A Study on commercial frequency source with ZCS type high frequency resonant Inverter

  • Kim, Jong-hae;Kim, Dong-Hee;Bae, Sang-Jun
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.1030-1035
    • /
    • 1998
  • This paper describes a new dc-ac inverter system, which for achieving sinusoidal ac waveform make use of parallel loaded frequency resonant inverter consisting of full bridge. Each one of the pair of switches in the inverter is driven to synchronous output frequency and the other is driven to PWM signal with resonant frequency proportional to magnitude of sine wave. Since current through switches is always zero at its turn-on in proposed inverter, low stress and low switching loss is achieved. The theoretical analysis is proved through the experimental test.

  • PDF

인버터 제어방식을 이용한 Flash butt 용접기의 용접성능 향상 (Improvement of Welding Performance of Flash bull Welder by on Inverter Controlled Technology)

  • 이왕하;박상국;이성희
    • 조명전기설비학회논문지
    • /
    • 제17권1호
    • /
    • pp.45-53
    • /
    • 2003
  • 본 연구에서는 프래쉬버트 용접에서의 용접성을 향상시키기 위하여 인버터를 대용량 시스템에 적용하여 타당성을 검증하였다. 제안된 시스템은 풀브릿지 인버터방식을 채택하고, DSP제어기를 사용하였다. 인버터시스템으로 동작 주파수를 향상시키면서 기존의 위상 제어형 용접기의 용접성과 비교하여 스패터가 저감되는 등 용접성이 개선되는 것을 여러 가지 금속학적인 방법들을 이용하여 확인하고, 인버터 시스템의 타당성을 검증하였다.

Zinc - Bromine 플로우 배터리를 이용한 양방향 인버터 및 DC-DC 컨버터 설계 및 실증 (Design and verification of Bi-Directional Inverter and Converter using Zinc-Bromine Flow Battery)

  • 이승준;조영훈;임종웅;최규하
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.389-390
    • /
    • 2015
  • This paper proposes renewable energy system related with flow battery system which is divided into two system, converter and inverter. The Interleaved Boost Converter circuit was used for DC - DC Converter and Full-Bridge Inverter was used for Grid connected Inverter. This paper design each system and uses methods to operate converter and inverter in high efficiency.

  • PDF

A High Efficiency Two-stage Inverter for Photovoltaic Grid-connected Generation Systems

  • Liu, Jiang;Cheng, Shanmei;Shen, Anwen
    • Journal of Power Electronics
    • /
    • 제17권1호
    • /
    • pp.200-211
    • /
    • 2017
  • Conventional boost-full-bridge and boost-hybrid-bridge two-stage inverters are widely applied in order to adapt to the wide dc input voltage range of photovoltaic arrays. However, the efficiency of the conventional topology is not fully optimized because additional switching losses are generated in the voltage conversion so that the input voltage rises and then falls. Moreover, the electrolytic capacitors in a dc-link lead to a larger volume combined with increases in both weight and cost. This paper proposes a higher efficiency inverter with time-sharing synchronous modulation. The energy transmission paths, wheeling branches and switching losses for the high-frequency switches are optimized so that the overall efficiency is greatly improved. In this paper, a contrastive analysis of the component losses for the conventional and proposed inverter topologies is carried out in MATLAB. Finally, the high-efficiency under different switching frequencies and different input voltages is verified by a 3 kW prototype.

A Study on a Single-Phase Module UPS using a Three-Arm Converter/Inverter

  • Koo, Tae-Geun;Byun, Young-Bok;Joe, Ki-Yeon;Kim, Dong-Hee;Kim, Chul-U
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제3B권1호
    • /
    • pp.44-51
    • /
    • 2003
  • The module UPS can flexibly implement expansion of power system capacities. Further-more, it can be used to build up the parallel redundant system to improve the reliability of power system operation. To realize the module UPS, load sharing without interconnection among parallel connecting modules as well as a small scale and lightweight topology is necessary. In this paper, the three-arm converter/inverter is compared with the general full-bridge and half-bridge topology from a practical point of view and chosen as the module UPS topology. The switching control approaches based on a pulse width modulation of the converter and inverter of the system are presented independently. The frequency and voltage droop method is applied to parallel operation control to achieve load sharing. Two prototype 3㎸A modules are designed and implemented to confirm the effectiveness of the pro-posed approaches. Experimental results show that the three-arm UPS system has a high power factor, a low distortion of output voltage and input current, and good load sharing characteristics.

Implementation of Multilevel Boost DC-Link Cascade based Reversing Voltage Inverter for Low THD Operation

  • Rao, S. Nagaraja;Kumar, D.V. Ashok;Babu, Ch. Sai
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1528-1538
    • /
    • 2018
  • In this paper, configuration of $1-{\phi}$ seven-level boost DC-link cascade based reversing voltage multilevel inverter (BDCLCRV MLI) is proposed for uninterrupted power supply (UPS) applications. It consists of three level boost converter, level generation unit and full bridge circuit for polarity generation. When compared with conventional boost cascaded H-bridge MLI configurations, the proposed system results in reduction of DC sources, reduced power switches and gate drive requirements. Inverter switching is accomplished by providing appropriate switching angles that is generated by any optimization switching angle techniques. Here, round modulation control (RMC) method is taken as the optimization method and switching angles are derived and the same is compared with various switching angles methods i.e., equal-phase (EP) method, and half-equal-phase (HEP) method which results in improved quality of obtained AC power with lowest total harmonic distortion (THD). Reduction in DC sources and switch count makes the system more cost effective. A simulation and prototype model of $1-{\phi}$ seven-level BDCLCRV MLI system is developed and its performance is analyzed for various operating conditions.

연료전지 발전시스템 구현을 위한 전력변환장치 하드웨어 세부설계 (Detailed Design of Power Conversion Device Hardware for Realization of Fuel Cell Power Generation System)

  • 윤용호
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권1호
    • /
    • pp.135-140
    • /
    • 2022
  • 연료전지 발전시스템은 수소와 산소의 반응 작용에 의해 직접 전기를 발생하는 스택(Stack) 이외에 메탄올, 천연가스 등 각종 연료로부터 수소를 만들어 내는 개질기와 스택에서 발전된 직류전압을 안정된 교류전압으로 변환시켜주는 전력변환기 등으로 구성되어진다. 이러한 시스템의 연료전지 출력은 직류로 가정에서 사용하기 위해서는 전력변환장치를 통하여 교류로 변환시키는 인버터 장치가 필요하다. 또한 연료전지 전압이 30-70V 정도로 이를 인버터 동작 전압인 380V 정도로 승압하기 위하여 DC-DC 승압형 컨버터를 사용한다. DC-DC 승압형 컨버터는 연료전지 출력과 인버터 사이에 존재하는 직류전압 가변장치로 연료전지 출력전압의 변동에 반응하여 컨버터의 일정 출력전압을 만들어 내므로 인버터는 연료전지의 전압 변동에 무관하게 일정한 전원을 공급 받을 수 있다. 따라서 본 논문에서는 연료전지발전 시스템의 구성 원 중 연료전지 출력전압(30-70V)을 입력으로 받아 계통연계에 적용되는 인버터의 주요 전원인 풀 브리지(Full-Bridge) 컨버터의 하드웨어 세부설계에 대하여 논하고자 한다.