• Title/Summary/Keyword: fueling

Search Result 115, Processing Time 0.028 seconds

A Study on the Improvement of Hydrogen Tank Fueling Performance Using MC Methods (MC 기법을 이용한 수소 탱크 충전 성능 향상에 관한 연구)

  • JIAH CHOI;SANGWON JI;JISEONG JANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.5
    • /
    • pp.447-455
    • /
    • 2023
  • SAE J2601, hydrogen fueling protocols, proposes two charging methods. The first is the table-based fueling protocol, and the second is the MC formula-based fueling protocol. Among them, MC formula-based fueling protocol calculates and supplies the target pressure and pressure ramp rate (PRR) using the pre-cooling temperature of the hydrogen and the physical parameters of the tank in the vehicle. The coefficient of the MC formula for deriving MC varies depending on the physical parameters of the tank in the vehicle. However, most studies use the MC coefficient derived from SAE J2601 as it is, despite the difference in the physical parameters of the tank applied to the study and the tank used to derive the MC coefficient from SAE J2601. In this study, the MC coefficient was derived by applying the hydrogen tank currently used, and the difference with the fueling performance using the MC coefficient proposed in SAE J2601 was verified. In addition, the difference was confirmed by comparing and analyzing the fueling performance of the table-based method currently used in hydrogen fueling stations and the MC formula-based method using MC coefficient derived in this study.

Aircraft fueling optimization model under a fueling cost differentiation (급유비용 차별하의 항공기 급유 최적화 모형)

  • Kim, Jun-Hyeok
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.3
    • /
    • pp.103-109
    • /
    • 2009
  • Aircraft fuel cost is the largest airline expenses in airlines who play a major role in air transportation system. Airlines have been making a great effort to save fuel as much as they can. Among these efforts, the systematic fueling strategy has been taken a growing attention since it is recognized as a very cost-effective fuel management strategy. The systematic fueling strategy is the fuel saving strategy in which extra amount of fuel is loaded to utilize the fueling cost differentiation among the cities where the aircraft operate. In this paper, the aircraft fueling optimization model is proposed. The proposed model is to calculate precise amount of loaded fuel to minimize overall fuel cost assuming that the aircraft routing for all aircrafts and fueling cost in all airports where the aircraft fly are given. Compared with heuristic fueling strategy, the result of the proposed model is promising. Therefore, it is expected that the proposed model plays a major role in fuel management strategy in airline operation.

A Construction Plan of Hydrogen Fueling Stations on Express Highways Using Geographic Information System (지리정보시스템을 이용한 고속국도에서의 수소충전소 구축 방안)

  • Gim, Bongjin;Kook, Ji Hoon;Cho, Sang Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.255-263
    • /
    • 2014
  • This paper deals with a construction plan of hydrogen fueling stations on express highways using geographic information system. We analyzed the existing hydrogen fueling stations and production facilities to construct the hydrogen supply system to satisfy the hydrogen demands. Also, we suggested the necessary number and locations of hydrogen fueling stations on express highways for operating fuel cell vehicles. As a result, we need to construct at least 6 hydrogen stations on express highways in 2020 and 14 hydrogen stations in 2025. In 2030, when fuel cell vehicles are expected to spread over the whole nation, 114 hydrogen stations are needed to construct on express highways. This study mainly utilized the information of distances between hydrogen production facilities and fueling stations. However, we need to analyze the other factors such as traffic and income data. Also, it is necessary to make a suitable construction plan of hydrogen fueling stations that should be constructed on each district using geographic information system.

A Study on Failure Mode and Effect Analysis of Hydrogen Fueling Nozzle Used in Hydrogen Station (수소충전소용 수소 충전 노즐의 고장 유형 및 영향분석 )

  • JUHYEON KIM;GAERYUNG CHO;SANGWON JI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.682-688
    • /
    • 2023
  • In this paper, analyzes the type of failure and its effect on the hydrogen fueling nozzle used in hydrogen station. Failure of hydrogen fueling nozzle was analyzed using a qualitative risk assessment method, failure mode and effect analysis. The failure data of hydrogen fueling nozzles installed in domestic hydrogen stations are collected, and the failure types are classified, checked the main components causing the failure. Criticality analysis was derived based on frequency and severity depending on the failure mode performed. A quality function is developed by a performance test evaluation item of the hydrogen fueling nozzle, and the priority order of design characteristics is selected. Through the analysis results, the elements to improve the main components for enhancing the quality and maintenance of the hydrogen fueling nozzle were confirmed.

Simulation on the gas fueling for the base operation of the KSTAR tokamak (KSTAR 토카막 기본운전을 위한 연료주입 모의실험)

  • In, S.R.;Kim, T.S.;Jeong, S.H.
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.6
    • /
    • pp.489-495
    • /
    • 2007
  • The assembly of the main system of the KSTAR tokamak has been recently completed, and the preparation for the 1st plasma and test operations is progressed. The fueling system established for these purposes uses only one port placed at the opposite side of the pumping duct, and has a difficulty of attaining a uniform and fast supply of fuel particles to the plasma. At the base operation stage after finishing the test operation, the fueling system must be improved to provide a uniform fueling and a feed-back control in accordance with a high-density tokamak plasma maintained for a long period. As a part for understanding the points to be improved in the fueling system, a Monte Carlo simulation on the gas fueling into the tokamak plasma has been executed. After modeling the vacuum vessel and the plasma of quasi-D shapes as tori of rectangular cross-sections, the influences of the position and the number of the fueling inputs on the particle density distribution for a given pumping probability and mean free path were investigated.

Analysis of Damage Range and Impact of On-Site Hydrogen Fueling Station Using Quantitative Risk Assessment Program (Hy-KoRAM) (정량적 위험성평가 프로그램(Hy-KoRAM)을 이용한 제조식 수소충전소 피해범위 및 영향 분석)

  • KIM, HYELIM;KANG, SEUNGKYU
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.459-466
    • /
    • 2020
  • As the hydrogen industry grows, expansion of infrastructure for hydrogen supply is required, but the safety of hydrogen facilities is concerned due to the recent accidents at the Gangneung hydrogen tank and the Norwegian hydrogen fueling station. In this study, the damage range and impact analysis on the on-site hydrogen fueling station was conducted using Hy-KoRAM. This is a domestically developed program that adds functions based on HyRAM. Through this risk assessment, it was evaluated whether the on-site hydrogen fueling station meets international standards and suggested ways to improve safety.

A Study on the Modeling of Fueling Hydrogen Tank in Vehicle Using Dispenser (디스펜서를 이용한 차량용 연료 탱크 수소 충전 모델링에 관한 연구)

  • Choi, Ji Ah;Ji, Sang Won;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.36-44
    • /
    • 2022
  • Hydrogen energy as an alternative source of energy has been receiving tremendous support around the world, and research is being actively conducted accordingly. However, most of the studies focus on hydrogen storage tanks and only are few studies on interpreting the hydrogen filling system itself. In this study, with reference to SAE J2601, a hydrogen fueling protocol, a simulation model was developed that can confirm the behavior of the vehicle's internal tank during hydrogen fueling. With respect to factors such as fuel supply temperature, ambient temperature, and pressure increase rate, the developed model can check the change of temperature and pressure in the tank and the state of hydrogen charging during hydrogen fueling. The validity of the developed simulation model was confirmed by comparing the simulation results with the experimental results presented in SAE J2601.

An Analysis of the Effect of Pressure Ramp Rate on the Major Parameters of the Standard Hydrogen Fueling Protocol (수소충전 시 압력상승률이 표준충전프로토콜 중요변수에 미치는 영향 해석)

  • Chae, Chungkeun;Kim, Yonggyu;Chae, Seungbeen
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.23-32
    • /
    • 2020
  • It is not easy to fully fuel high pressure(70 MPa) hydrogen in a hydrogen vehicle tank quickly. This is because the temperature inside the tank rises rapidly due to heat caused by the Joule-Thomson effect, etc. So fueling protocols such as SAE J2601 in the U.S. and JPEC-S 0003 in Japan appeared. However, there is a problem with these protocols that a number assumption are introduced and the content is too complex and limited in scope. This study was conducted to develop a new protocol based on complete real-time communication. In this study, the hydrogen fueling simulation program were used to examine how the pressure ramp rate affects the temperature and pressure rise in the tank and the fueling flow rate. The results confirmed that the first parameter to be considered in determining the pressure ramp rate is the temperature of the tank.

Economic Evaluation of Domestic Low-Temperature Water Electrolysis Hydrogen Production (국내 저온수전해 수소생산의 경제성 평가)

  • Gim, Bong-Jin;Kim, Jong-Wook;Ko, Hyun-Min
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.559-567
    • /
    • 2011
  • This paper deals with an economic evaluation of domestic low-temperature water electrolysis hydrogen production. We evaluate the economic feasibility of on-site hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ by the alkaline and the polymer electrolyte membrane water electrolysis. The hydrogen production prices of the alkaline water electrolysis, the polymer electrolyte membrane water electrolysis, and the steam methane reforming hydrogen fueling stations with the hydrogen production capacity of 30 $Nm^3/hr$ were estimated as 18,403 $won/kgH_2$, 22,945 $won/kgH_2$, 21,412 $won/kgH_2$, respectively. Domestic alkaline water electrolysis hydrogen production is evaluated as economical for small on-site hydrogen fueling stations, and we need to further study the economic evaluation of low-temperature water electrolysis hydrogen production for medium and large scale on-site hydrogen fueling stations.

A Development of Simulation Program for CNG Refueling Station (CNG 충전시스템 충전특성해석 프로그램 개발)

  • Yang, Pan-Seok;Kang, Chan-Goo;Kwan, Yong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.331-336
    • /
    • 2001
  • Theoretical approach was taken to the whole CNG refueling process. In particular, this study was focused on the prediction of flow rate at any given piping configuration of CNG system, in order that a simulation program for the CNG refueling system should be developed. The simulation result of refueling process was compared with experimental result obtained from various kinds of fueling configuration. The simulation results showed a satisfactory agreement within 10% errors in fueling time, fueling amount, and residual pressure. The developed program would be used a good engineering tools for estimating fueling performance for a any given CNG station.

  • PDF