• 제목/요약/키워드: fuel category

검색결과 32건 처리시간 0.025초

잣나무림의 수관연료량 추정을 위한 상대생장식 개발 (Allometric Equations for Crown Fuel Biomass of Pinus koraiensis Stands in Korea)

  • 김성용;장미나;이병두;이영진
    • 한국산림과학회지
    • /
    • 제104권1호
    • /
    • pp.104-110
    • /
    • 2015
  • 본 연구의 목적은 우리나라 35년생 잣나무림을 대상으로 수관층 연료량을 추정하기 위한 상대생장식을 개발하고자 하였다. 경기도 가평군, 강원도 홍천군, 정선군 국유림 내 잣나무 조림지를 대상으로 총 24본의 표본목을 벌채하여 분석에 이용하였다. 수관연료량 추정을 위해 수간, 잎, 가지로 분류하여 중량을 측정하였으며, 가지는 고사여부와 직경 크기별로 세분화하여 구분하였다. 각 부위별 수관층 연료량을 보면 가장 높은 비율을 차지하는 부위는 잎(16.6 kg, 34.7%)으로 나타났으며, 2~4 cm 가지(9.0 kg, 18.9%), 1~2 cm 가지(6.6 kg, 13.8%), 0.5 cm 이하 가지(5.1 kg, 10.6%), 0.5~1 cm 가지(4.9 kg, 10.3%), 고사 가지(3.2 kg, 6.8%), 4 cm 이상 가지(2.4 kg, 4.9%) 순으로 나타났다. 대부분의 수관 부위에서 $lnWt={\beta}_0+{\beta}_1lnD$ 식이 조정결정계수가 가장 높고($R^2_{adj}=0.6021{\sim}0.9742$) 표준추정오차가 가장 낮은 것으로 나타났다(S.E.E. = 0.2018~0.7271). 한편, 수관화 확산 시 연소가능한 수관연료(잎과 직경 1 cm 이하 가지)의 비율은 총 수관에서 55.6%로 매우 높게 나타났다.

군사부문 온실가스 배출량 산정에 관한 연구 (A Study on the Estimation of GHGs Emission by Military Sector)

  • 송기봉;최상진;김정;장영기
    • 한국기후변화학회지
    • /
    • 제8권2호
    • /
    • pp.177-186
    • /
    • 2017
  • In this research, we have developed standardized procedures for preparing of emission inventories on military sector. The procedures are as follows; 1) Identify all relevant emission sources list of military sector in Republic of Korea. 2) Select methods to estimate GHGs emissions by source categories such as heating boilers, tactical vehicles, military vessels and military aviation from US EPA, IPCC, EEA/EMEP, and ROK Ministry of Environment. 3) Identify and select data sources for activities and parameters from Korea annual oil statistics and Korea Procurement system. 4) Compare with each GHGs emission used by each activities. The conclusive results utilized by emission source categories and associated factors are described as follows; In 2013, GHGs was estimated 2,656 kilotons $CO_2-eq$ emitted by military sector. The diesel combustion contributed from a minimum of 43.8% to a maximum of 50.2% and JP-8 contributed from a minimum of 43.7% to a maximum of 52.8% to the 2001~2015 GHGs emission trend. In the result of comparing GHGs emissions with Korea Annual Oil Statistics (Tier 1) and supplied fuel through the Korea Procurement System (Tier 2) in 2015, the total GHGs emission was 2,867 kilotons $CO_2-eq$ estimated by Tier 2 is similar to the emission estimated by Tier 1. However, this reveals that the GHGs emission separated by local areas were a lot of different from Tier 1 and 2. The cause of difference between Tier 1 and Tier 2 was that Korea annual oil statistics utilized data from a fuel supplier. The data does not reflect the reality of the location of end user.

Determination of taxiing resistances for transport category airplane tractive propulsion

  • Daidzic, Nihad E.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권6호
    • /
    • pp.651-677
    • /
    • 2017
  • For the past ten years' efforts have been made to introduce environmentally-friendly "green" electric-taxi and maneuvering airplane systems. The stated purpose of e-taxi systems is to reduce the taxiing fuel expenses, expedite pushback procedures, reduce gate congestion, reduce ground crew involvement, and reduce noise and air pollution levels at large airports. Airplane-based autonomous traction electric motors receive power from airplane's APU(s) possibly supplemented by onboard batteries. Using additional battery energy storages ads significant inert weight. Systems utilizing nose-gear traction alone are often traction-limited posing serious dispatch problems that could disrupt airport operations. Existing APU capacities are insufficient to deliver power for tractive taxiing while also providing for power off-takes. In order to perform comparative and objective analysis of taxi tractive requirements a "standard" taxiing cycle has been proposed. An analysis of reasonably expected tractive resistances has to account for steepest taxiway and runway slopes, taxiing into strong headwind, minimum required coasting speeds, and minimum acceptable acceleration requirements due to runway incursions issues. A mathematical model of tractive resistances was developed and was tested using six different production airplanes all at the maximum taxi/ramp weights. The model estimates the tractive force, energy, average and peak power requirements. It has been estimated that required maximum net tractive force should be 10% to 15% of the taxi weight for safe and expeditious airport movements. Hence, airplanes can be dispatched to move independently if the operational tractive taxi coefficient is 0.1 or higher.

A Safety Analysis of a Steam Generator Module Pipe Break for the SMART-P

  • Kim Hee Kyung;Chung Young-Jong;Yang Soo-Hyung;Kim Hee-Cheol;Zee Sung-Quun
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.53-58
    • /
    • 2004
  • SMART-P is a promising advanced small and medium category nuclear power reactor. It is an integral type reactor with a sensible mixture of new innovative design features and proven technologies aimed at achieving a highly enhanced safety and improved economics. The enhancement of the safety and reliability is realized by incorporating inherent safety improving features and reliable passive safety systems. The improvement in the economics is achieved through a system simplification, and component modularization. Preliminary safety analyses on selected limiting accidents confirm that the inherent safety improving design characteristics and the safety system of SMART-P ensure the reactor's safety. SMART-P is an advanced integral pressurized water reactor. The purpose of this study is for the safety analysis of the steam generator module pipe break for the SMART-P. The integrity of the fuel rod is the major criteria of this analysis. As a result of this analysis, the safety of the RCS and the secondary system is guaranteed against the module pipe break of a steam generator of the SMART-P.

설비공학 분야의 최근 연구 동향 : 2013년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2013)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제26권12호
    • /
    • pp.605-619
    • /
    • 2014
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2013. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of fluid machinery, pipes and relative parts including orifices, dampers and ducts, fuel cells and power plants, cooling and air-conditioning, heat and mass transfer, two phase flow, and the flow around buildings and structures. Research issues dealing with home appliances, flows around buildings, nuclear power plant, and manufacturing processes are newly added in thermal and fluid engineering research area. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results for general analytical model for desiccant wheels, the effects of water absorption on the thermal conductivity of insulation materials, thermal properties of Octadecane/xGnP shape-stabilized phase change materials and $CO_2$ and $CO_2$-Hydrate mixture, effect of ground source heat pump system, the heat flux meter location for the performance test of a refrigerator vacuum insulation panel, a parallel flow evaporator for a heat pump dryer, the condensation risk assessment of vacuum multi-layer glass and triple glass, optimization of a forced convection type PCM refrigeration module, surface temperature sensor using fluorescent nanoporous thin film. In the area of pool boiling and condensing heat transfer, researches on ammonia inside horizontal smooth small tube, R1234yf on various enhanced surfaces, HFC32/HFC152a on a plain surface, spray cooling up to critical heat flux on a low-fin enhanced surface were actively carried out. In the area of industrial heat exchangers, researches on a fin tube type adsorber, the mass-transfer kinetics of a fin-tube-type adsorption bed, fin-and-tube heat exchangers having sine wave fins and oval tubes, louvered fin heat exchanger were performed. (3) In the field of refrigeration, studies are categorized into three groups namely refrigeration cycle, refrigerant and modeling and control. In the category of refrigeration cycle, studies were focused on the enhancement or optimization of experimental or commercial systems including a R410a VRF(Various Refrigerant Flow) heat pump, a R134a 2-stage screw heat pump and a R134a double-heat source automotive air-conditioner system. In the category of refrigerant, studies were carried out for the application of alternative refrigerants or refrigeration technologies including $CO_2$ water heaters, a R1234yf automotive air-conditioner, a R436b water cooler and a thermoelectric refrigerator. In the category of modeling and control, theoretical and experimental studies were carried out to predict the performance of various thermal and control systems including the long-term energy analysis of a geo-thermal heat pump system coupled to cast-in-place energy piles, the dynamic simulation of a water heater-coupled hybrid heat pump and the numerical simulation of an integral optimum regulating controller for a system heat pump. (4) In building mechanical system research fields, twenty one studies were conducted to achieve effective design of the mechanical systems, and also to maximize the energy efficiency of buildings. The topics of the studies included heating and cooling, HVAC system, ventilation, and renewable energies in the buildings. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which can improve the energy efficiency of the buildings. (5) The field of architectural environment is mostly focused on indoor environment and building energy. The main researches of indoor environment are related to infiltration, ventilation, leak flow and airtightness performance in residential building. The subjects of building energy are worked on energy saving, operation method and optimum operation of building energy systems. The remained studies are related to the special facility such as cleanroom, internet data center and biosafety laboratory. water supply and drain system, defining standard input variables of BIM (Building Information Modeling) for facility management system, estimating capability and providing operation guidelines of subway station as shelter for refuge and evaluation of pollutant emissions from furniture-like products.

IPCC가이드라인을 이용한 중소도시 C위생매립장의 메탄가스 발생량 예측을 통한 경제성 평가 (Estimation of Economics thorough Prediction of Methane Generation using IPCC Guideline from C Sanitary Landfill)

  • 이상우;박서윤;장인수;강병욱;박상찬;연익준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.189.1-189.1
    • /
    • 2011
  • Global warming effect was intensified due to rapid growth of fossil fuel consumption caused by urbanization and industrialization. Various efforts was being done to solve the problems leading to anomaly climate such as flood, downpour, heavy snow. As a results of international efforts for management of global warming, Kyoto Protocol, which was passed in Kyoto, Japan in 1997, designated $CO_2$, $CH_4$, $N_2O$, HFCs, PFCs, $SF_6$ as a global warming gases. And IPCC(Intergovernmental Panel on Climate Change) suggested IPCC guideline for systematic establishment of national greenhouse gas inventory. Among five categories in IPCC guideline, the representative emission source of waste category is SWDS(solid waste disposal site). The concentrative research should progress for effective management of greenhouse gas related with waste. In this study, Tier1 and Tier2 methods which was suggested by 2006 IPCC(Intergovernmental Panel on Climate Change) guideline, was used to predict methane generation from C sanitary landfill located in Chungju area. To predict methane generation from C sanitary landfill, all factors were defaults values that were provided by 2006 IPCC guideline and Korea emission factors for Tier1 and Tier2 method. And economics of generated methane was estimated. From the predicted result using IPCC guideline, the methane generation was persistingly increased over a 9-year period(2000 ~ 2008). Aggregated amount of methane generation was about 3,017ton and 3,170ton predicted by Tier1 and Tier2, respectively. From the results of estimated economic value gained by generated methane from the C sanitary landfill for ten years from now(2010 ~ 2020), the profit was about 2.39 ~ 2.76 hundred million won.

  • PDF

Ro-Ro 구역용 미분무 소화설비의 개발을 위한 실험적 연구 (An experimental study on development of water mist fire-fighting systems for Ro-Ro spaces)

  • 곽지현;김영한
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권8호
    • /
    • pp.946-952
    • /
    • 2013
  • 선박의 Ro-Ro 구역이나 특별범주구역의 화재방호를 위해 설치하는 고정식 수계소화설비의 개발 및 실용화를 위해, 특히 방수량이 적으며 관련기준에서 요구하는 성능요건을 만족하는 미분무 노즐을 개발하고자 실물화재실험을 수행하였다. 본 설비의 화재시나리오는 크게 두 가지로 트럭화물화재와 승용차화재로 구분되며, 각각 고정 설치된 미분무 노즐과 화원과의 세 가지 위치에 대한 시나리오로 이루어져 있다. 모든 화재실험은 30분간 진행되었으며 천장부의 가스온도와 우드펠릿의 손상율, 타깃합판의 착화여부로 판단되었다. 본 논문은 두 가지 화재실험 중 조건이 더욱 까다로운 트럭화재용 미분무 노즐의 결과를 위주로 방수압력과 방수량, 미분무수의 유동특성에 따른 화재실험결과와 화재진압특성을 고찰하였으며, 수십 회의 반복실험 결과 분당 약 40 L의 유량을 가지는 저압 미분무 노즐로 Ro-Ro구역의 화재진압이 가능한 것으로 나타났다.

재생에너지로서 산림바이오매스 활용 촉진을 위한 주요국의 정책분석을 통한 한국의 접근전략 (S. Korea's Approach Strategy through Policy Analysis of Major Countries to Promote the Use of Forest Biomass as Renewable Energy)

  • 이승록;박세훈;고문현;한규성
    • 신재생에너지
    • /
    • 제18권3호
    • /
    • pp.10-22
    • /
    • 2022
  • Forest biomass energy is based on scientific evidence in response to carbon neutrality and the climate crisis, international consensus, and environmental-geographic characteristics of each nation. In this study, the authors aimed to analyze macroscopic forest biomass energy policies for ten major countries. They categorized them into six detailed categories (Sustainable utilization, Cascading Uutilization, Replacement of fossil fuel/Carbon intensive products, Utilization of forest by-products/residues as the source of energy, Contribution to carbon-neutral/climate change, and Biomass combined with CCS/CCUS ). In addition, the surveyed nations have developed a policy consensus on the active use of forest biomass with sustainable forest management except for the cascading utilization category. Furthermore, the authors evaluated the mid to long-term plans of the Korean government for improvements in the policy and legal aspects. As a result, the authors derived four major directions that South Korea should approach strategically in the future (1) secure financial resources for sustainable forest management and stimulating investment in the timber industry, (2) promote unified policies to establish a bio-economy, (3) enhancement of the forest biomass energy system, and (4) reorganization and promotion of strategy centered on the opinions of field experts in internal and external instability.

도로수송부문 온실가스 배출량 산정을 위한 간선 및 지선도로상의 교통량 추정시스템 개발 (Development of Traffic Volume Estimation System in Main and Branch Roads to Estimate Greenhouse Gas Emissions in Road Transportation Category)

  • 김기동;이태정;정원석;김동술
    • 한국대기환경학회지
    • /
    • 제28권3호
    • /
    • pp.233-248
    • /
    • 2012
  • The national emission from energy sector accounted for 84.7% of all domestic emissions in 2007. Of the energy-use emissions, the emission from mobile source as one of key categories accounted for 19.4% and further the road transport emission occupied the most dominant portion in the category. The road transport emissions can be estimated on the basis of either the fuel consumed (Tier 1) or the distance travelled by the vehicle types and road types (higher Tiers). The latter approach must be suitable for simultaneously estimating $CO_2$, $CH_4$, and $N_2O$ emissions in local administrative districts. The objective of this study was to estimate 31 municipal GHG emissions from road transportation in Gyeonggi Province, Korea. In 2008, the municipalities were consisted of 2,014 towns expressed as Dong and Ri, the smallest administrative district unit. Since mobile sources are moving across other city and province borders, the emission estimated by fuel sold is in fact impossible to ensure consistency between neighbouring cities and provinces. On the other hand, the emission estimated by distance travelled is also impossible to acquire key activity data such as traffic volume, vehicle type and model, and road type in small towns. To solve the problem, we applied a hierarchical cluster analysis to separate town-by-town road patterns (clusters) based on a priori activity information including traffic volume, population, area, and branch road length obtained from small 151 towns. After identifying 10 road patterns, a rule building expert system was developed by visual basic application (VBA) to assort various unknown road patterns into one of 10 known patterns. The expert system was self-verified with original reference information and then objects in each homogeneous pattern were used to regress traffic volume based on the variables of population, area, and branch road length. The program was then applied to assign all the unknown towns into a known pattern and to automatically estimate traffic volumes by regression equations for each town. Further VKT (vehicle kilometer travelled) for each vehicle type in each town was calculated to be mapped by GIS (geological information system) and road transport emission on the corresponding road section was estimated by multiplying emission factors for each vehicle type. Finally all emissions from local branch roads in Gyeonggi Province could be estimated by summing up emissions from 1,902 towns where road information was registered. As a result of the study, the GHG average emission rate by the branch road transport was 6,101 kilotons of $CO_2$ equivalent per year (kt-$CO_2$ Eq/yr) and the total emissions from both main and branch roads was 24,152 kt-$CO_2$ Eq/yr in Gyeonggi Province. The ratio of branch roads emission to the total was 0.28 in 2008.

설비공학 분야의 최근 연구 동향 : 2016년 학회지 논문에 대한 종합적 고찰 (Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2016)

  • 이대영;김사량;김현정;김동선;박준석;임병찬
    • 설비공학논문집
    • /
    • 제29권6호
    • /
    • pp.327-340
    • /
    • 2017
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2016. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) The research works on the thermal and fluid engineering have been reviewed as groups of flow, heat and mass transfer, the reduction of pollutant exhaust gas, cooling and heating, the renewable energy system and the flow around buildings. CFD schemes were used more for all research areas. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics, pool boiling and condensing heat transfer and industrial heat exchangers. Researches on heat transfer characteristics included the results of the long-term performance variation of the plate-type enthalpy exchange element made of paper, design optimization of an extruded-type cooling structure for reducing the weight of LED street lights, and hot plate welding of thermoplastic elastomer packing. In the area of pool boiling and condensing, the heat transfer characteristics of a finned-tube heat exchanger in a PCM (phase change material) thermal energy storage system, influence of flow boiling heat transfer on fouling phenomenon in nanofluids, and PCM at the simultaneous charging and discharging condition were studied. In the area of industrial heat exchangers, one-dimensional flow network model and porous-media model, and R245fa in a plate-shell heat exchanger were studied. (3) Various studies were published in the categories of refrigeration cycle, alternative refrigeration/energy system, system control. In the refrigeration cycle category, subjects include mobile cold storage heat exchanger, compressor reliability, indirect refrigeration system with $CO_2$ as secondary fluid, heat pump for fuel-cell vehicle, heat recovery from hybrid drier and heat exchangers with two-port and flat tubes. In the alternative refrigeration/energy system category, subjects include membrane module for dehumidification refrigeration, desiccant-assisted low-temperature drying, regenerative evaporative cooler and ejector-assisted multi-stage evaporation. In the system control category, subjects include multi-refrigeration system control, emergency cooling of data center and variable-speed compressor control. (4) In building mechanical system research fields, fifteenth studies were reported for achieving effective design of the mechanical systems, and also for maximizing the energy efficiency of buildings. The topics of the studies included energy performance, HVAC system, ventilation, renewable energies, etc. Proposed designs, performance tests using numerical methods and experiments provide useful information and key data which could be help for improving the energy efficiency of the buildings. (5) The field of architectural environment was mostly focused on indoor environment and building energy. The main researches of indoor environment were related to the analyses of indoor thermal environments controlled by portable cooler, the effects of outdoor wind pressure in airflow at high-rise buildings, window air tightness related to the filling piece shapes, stack effect in core type's office building and the development of a movable drawer-type light shelf with adjustable depth of the reflector. The subjects of building energy were worked on the energy consumption analysis in office building, the prediction of exit air temperature of horizontal geothermal heat exchanger, LS-SVM based modeling of hot water supply load for district heating system, the energy saving effect of ERV system using night purge control method and the effect of strengthened insulation level to the building heating and cooling load.