• Title/Summary/Keyword: fuel alcohol

Search Result 120, Processing Time 0.026 seconds

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

Influence of Low Level Bio-Alcohol Fuels on Fuel Economy and Emissions in Spark Ignition Engine Vehicles (저농도 바이오알코올 혼합 연료가 스파크 점화 엔진 차량의 연비 및 배출가스에 미치는 영향)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2020
  • This study was conducted to analyze the impact of low level bio-alcohols that can be applied without modification of vehicles to improve air quality in Korea. The emissions and fuel economy of low level bio-alcohols mixed gasoline fuels of spark ignition vehicles, which are direct injection and port fuel injection, were studied in this paper. As a result of the evaluation, the particle number (PN) was reduced in all evaluation fuels compared to the sub octane gasoline without oxygen, but the correlation with the PN due to the increase in the oxygen content was not clear. In the CVS-75 mode, emitted CO tended to decrease compared to sub octane gasoline, but no significant correlation was found between NMHC, NOx and fuel economy. In addition, it was found that the aldehyde increased in the oxygenated fuel, and there was no difference in terms of the amount of aldehyde generated among a series of bio-alcohol mixed fuels.

Fuel Research of suljigemi Pellet using Biomass (바이오매스를 이용한 술지게미 펠릿의 연료 연구)

  • Kim, Dae-Nyeon;Choi, Jeong-Won
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.3
    • /
    • pp.109-115
    • /
    • 2018
  • This paper proposes the method to develop the fuel of suljigemi pellet using agricultural by-products the occurred during the manufacturing of alcohol. The goal of the development of suljigemi using biomass is to make the pellet fuel of high calorie. The suljigemi pellet is difficult to recycle waste in the manufacture company of alcohol. suljigemi pellet has the effect of zero emission as the soil conditioner using ash after burning. Also suljigemi pellet has the reduction effect of carriage fee, fuel economy and low-cost high-efficiency effects, environmentally clean fuel as CO2 emissions savings. So the technologies of the suljigemi fuel pellet are developing low carbon, green growth renewable energy fuel through futuristic energy system will be. In experiments, suljigemi pellets confirmed the calories by about 10% higher than wood pellets with the same conditions.

Studies on the Addition of the Hydroquinonesulfonic Acid to Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) Membranes to Improve the Ion Conductivity for Fuel Cell Applications (Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) 이온교환막에 이온전도도 향상을 hydroquinonesulfonic acid 첨가 연구)

  • 임지원;황호상
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.44-52
    • /
    • 2004
  • This paper concerns the development of a cationic polymeric membranes for direct methanol fuel cell. The crosslinked poly(vinyl alcohol) (PVA) membranes with poly(acrylic acid-co-maleic acid) (PAM) and hydroquinonesulfonic acid (HQSA) as the crosslinking agents were prepared according to the amount of crosslinking agents. The resulting membranes were characterized in terms of methanol permeability, proton conductivity, water content and ion exchange capacity. The methanol permeability and proton conductivity increased with increasing PAM content up to 9 wt% and then decreased. This trend is considered the effect of the cross linking rather than the introduction of hydrophilic groups. When the HQSA contents were varied, no interesting increases of proton conductivity, water content and ion exchange capacity were found.

Transesterification for FAME production of Rapeseed Oil

  • Jeong, Gwi-Taek;Yun, Dae-Hyeon;Gang, Chun-Hyeong;Choe, Byeong-Cheol;Lee, Un-Taek;Park, Don-Hui
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.164-168
    • /
    • 2003
  • Fatty acid methyl esters (FAMEs) show large potential applications as diesel substitutes, and they are known as biodiesel fuel. Biodiesel fuel as a renewable energy is an alternative that can reduce energy dependence on petroleum and air pollution. Several processes for the production of biodiesel fuel have been developed. Transesterification process under alkali-catalysis and short-chain alcohol gives high level yield of methyl esters in short reaction times. In this research, transesterification of rapeseed oil was investigated to produce the FAMEs. Experimental reaction conditions included molar ratio of oil to alcohol, concentration of catalyst, types of catalysts, reaction time, and reaction temperature. The conversion ratio of rapeseed oil enhanced with the alcohol-oil mixing ratio and with the reaction temperature.

  • PDF

Study on Fuel Characteristics Depending on Mixing Ratio of Bio-Butanol and Bio-Ethanol (바이오부탄올, 바이오에탄올 혼합비율에 따른 연료적 특성 연구)

  • KIM, SHIN;KIM, JAE-KON;PARK, CHEON-KYU;HA, JONG-HAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.6
    • /
    • pp.704-711
    • /
    • 2017
  • Korea, which has a high dependency on energy imports, is greatly affected by fluctuations in international oil prices. In order to offset these effects, various policies such as 'diversification of energy sources' and 'energy mix' are being pursued. Renewable Fuel Standard (RFS) is a policy promoted for this purpose, and a compulsory mixing system is applied only to the diesel. In order to reduce dependence on fossil fuels in various countries, they are concentrating on the dissemination of bio-alcohol as well as bio-diesel, and commercialization through various verification. In this study, evaluation of domestic materials and vehicles was carried out to promote domestic bio alcohol fuel. We analyzed the fuel characteristics of domestic quality standard items by mixing them with gasoline of automobile at a certain mixing ratio (0%, 3%, 6%, and 10%).

Sulfonated Dextran/Poly(vinyl alcohol) Polymer Electrolyte Membranes for Direct Methanol Fuel Cells

  • Won, Jong-Ok;Ahn, Su-Mi;Cho, Hyun-Dong;Ryu, Ji-Young;Ha, Heung-Yong;Kang, Yong-Soo
    • Macromolecular Research
    • /
    • v.15 no.5
    • /
    • pp.459-464
    • /
    • 2007
  • Polymer electrolyte membranes, featuring ionic channels, were prepared from sulfonated dextran/ poly(vinyl alcohol) (sD/PVA) membranes. A stiff sulfated dextran was chosen as the route for ionic transport, since ionic sites are located along the stiff dextran main chain. The sD/PVA blend membranes were annealed and then chemically crosslinked. The characteristics of the crosslinked sD/PVA membranes were investigated to determine their suitability as proton exchange membranes. The proton conductivity was found to increase with increasing amounts of sD inside the membrane, which reached a maximum and then decreased when the sD content exceeded 30 wt%, while the methanol permeability increased with increasing sD content. The good dispersion of sD inside the membrane, which serves as an ionic channels mimic, played a significant role in proton transportation.