Browse > Article

Sulfonated Dextran/Poly(vinyl alcohol) Polymer Electrolyte Membranes for Direct Methanol Fuel Cells  

Won, Jong-Ok (Department of Applied Chemistry, Sejong University)
Ahn, Su-Mi (Department of Applied Chemistry, Sejong University)
Cho, Hyun-Dong (Department of Applied Chemistry, Sejong University)
Ryu, Ji-Young (Fuel Cell Research Center, Korea Institute of Science and Technology)
Ha, Heung-Yong (Fuel Cell Research Center, Korea Institute of Science and Technology)
Kang, Yong-Soo (Division of Chemical Engineering, Hangyang University)
Publication Information
Macromolecular Research / v.15, no.5, 2007 , pp. 459-464 More about this Journal
Abstract
Polymer electrolyte membranes, featuring ionic channels, were prepared from sulfonated dextran/ poly(vinyl alcohol) (sD/PVA) membranes. A stiff sulfated dextran was chosen as the route for ionic transport, since ionic sites are located along the stiff dextran main chain. The sD/PVA blend membranes were annealed and then chemically crosslinked. The characteristics of the crosslinked sD/PVA membranes were investigated to determine their suitability as proton exchange membranes. The proton conductivity was found to increase with increasing amounts of sD inside the membrane, which reached a maximum and then decreased when the sD content exceeded 30 wt%, while the methanol permeability increased with increasing sD content. The good dispersion of sD inside the membrane, which serves as an ionic channels mimic, played a significant role in proton transportation.
Keywords
polymer electrolyte membranes; direct methanol fuel cells; poly(vinyl alcohol); dextran;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 J. Won and Y. S. Kang, Macromol. Symp., 204, 79 (2003)
2 S.-O. Kim and J. S. Kim, Macromol. Res., 10, 174 (2002)
3 H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006)   과학기술학회마을   DOI
4 N. Carretta, V. Tricoli, and F. Picchioni, J. Membr. Sci., 166, 189 (2000)
5 M. A. Vargas, R. A. Vargas, and B.-E. Mellander, Electrochim. Acta, 44, 4227 (1999)
6 W. S. Dai and T. A. Barbari, J. Membr. Sci., 156, 67 (1999)
7 V. Tricoli, J. Electrochem. Soc., 145, 3798 (1998)
8 J. H. Son, Y. S. Kang, and J. Won, J. Membr. Sci., 281, 345 (2006)
9 Y. Woo, S. Y. Oh, Y. S. Kang, and B. Jung, J. Membr. Sci., 220, 31 (2003)
10 M.-S. Kang, J. H. Kim, J. Won, S.-H. Moon, and Y. S. Kang, J. Membr. Sci., 247, 127 (2005)
11 M. Kawahara, M. Rikekawa, K. Sanui, and N. Ogata, Solid State Ionics, 136, 1193 (2000)
12 M. Rikukawa and K. Sanui, Prog. Polym. Sci., 25, 1463 (2000)   DOI   ScienceOn
13 J. Won, S. W. Choi, Y. S. Kang, H. Y. Ha, I.-H. Oh, H. S. Kim, K. T. Kim, and W. H. Jo, J. Membr. Sci., 214, 245 (2003)
14 J. Won, H. H. Park, Y. J. Kim, S. W. Choi, H. Y. Ha, I.-H. Oh, H. S. Kim, Y. S. Kang, and K. J. Ihn, Macromolecules, 36, 3228 (2003)
15 D. H. Jung, S. Y. Cho, D. H. Peck, D. R. Shin, and J. S. Kim, J. Power Sources, 118, 205 (2003)
16 V. Tricolo, N. Carretta, and M. Bartolozzi, J. Electrochem. Soc., 147, 1286 (2000)
17 K. D. Kreuer, Chem. Mater., 8, 610 (1996)
18 P. L. Shao, K. A. Mauritz, and R. B. Moore, Chem. Mater., 7, 192 (1995)   DOI   ScienceOn
19 B. Gupta, F. N. Büchi, and G. G. Scherer, Solid State Ionics, 61, 213 (1993)
20 J. Kim, B. Kim, B. Jung, Y. S. Kang, H. Y. Ha, I.-H. Oh, and K. J. Ihn, J. Macromol. Rapid Commun., 23, 375 (2002)
21 M.-S. Kang, Y.-J. Choi, and S.-H. Moon, J. Membr. Sci., 207, 157 (2002)
22 R. W. Kopitzke, C. A. Linkous, H. R. Anderson, and G. L. Melson, J. Electrochem. Soc., 147, 1677 (2000)
23 G.-L. Yuan and N. Kuramoto, Macromolecules, 36, 7939 (2003)