Studies on the Addition of the Hydroquinonesulfonic Acid to Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) Membranes to Improve the Ion Conductivity for Fuel Cell Applications

Poly(vinyl alcohol)/poly(acrylic acid-co-maleic acid) 이온교환막에 이온전도도 향상을 hydroquinonesulfonic acid 첨가 연구

  • 임지원 (한남대학교 공과대학 화학공학과) ;
  • 황호상 (한남대학교 공과대학 화학공학과)
  • Published : 2004.03.01

Abstract

This paper concerns the development of a cationic polymeric membranes for direct methanol fuel cell. The crosslinked poly(vinyl alcohol) (PVA) membranes with poly(acrylic acid-co-maleic acid) (PAM) and hydroquinonesulfonic acid (HQSA) as the crosslinking agents were prepared according to the amount of crosslinking agents. The resulting membranes were characterized in terms of methanol permeability, proton conductivity, water content and ion exchange capacity. The methanol permeability and proton conductivity increased with increasing PAM content up to 9 wt% and then decreased. This trend is considered the effect of the cross linking rather than the introduction of hydrophilic groups. When the HQSA contents were varied, no interesting increases of proton conductivity, water content and ion exchange capacity were found.

본 연구는 직접메탄을 연료전지(Direct Methanol Fuel Cell)에 적용가능한 양이온교환막 개발에 관한 것으로 poly(vinyl alcohol) (PVA)에 가교제로 poly(acrylic acid-co-maleic acid) (PAM)와 hydroquinonesulfonic acid (HQSA)를 이용하여 가교제의 함량을 변화시키면서 막을 제조하였다. 제조한 막은 가교제의 함량 변화에 따라 메탄을 투과도, 이온전도도를 측정하였으며 기본적인 이온교환막의 특성인 함수율, 이온교환용량 그리고 고정이온농도 등을 측정하였다. PAM 함량이 증가함에 따라 메탄을 투과도와 이온전도도 및 함수율이 조금 증가하는 추세를 보이다 9 wt%부터 감소하는 경향을 보였는데 이는 PAM의 친수성기보다는 가교효과의 영향이라 사료되며 HQSA 함량을 변화시켰을 때는 이온전도도, 함수율 그리고 이온교환용량이 전반적으로 증가하였는데 그 증가폭은 미비하였다.

Keywords

References

  1. Fuel Cells Bulletins no.12 J.Stephens
  2. Fuel Cell Handbook(Fourth Edition) J.H.Hirschenhofer(et al.)
  3. Scientific American v.88 C.K.Dyer
  4. Pltinum Met. Rev. v.40 M.P.Hogarth;G.A.Hard
  5. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yuxin Wang;E.L.Cussler https://doi.org/10.1016/S0376-7388(98)00264-6
  6. J. Appl. Poly. Sci. v.73 Properties of electroresponsive poly(vinyl alcohol)/poly(acrylic acid) IPN hydrogels under an electric stimulus S.Y.Kim;H.S.Shin;Y.M.Lee;C.N.Jeong https://doi.org/10.1002/(SICI)1097-4628(19990829)73:9<1675::AID-APP8>3.0.CO;2-9
  7. J. Appl. Polym. Sci. v.69 Prevaporation of alcohol-toluene mixtures through polymer network hydrogels composed of poly(vinyl alcohol) and poly (acrylic acid) H.C.Park;M.H.V.Mulder https://doi.org/10.1002/(SICI)1097-4628(19980718)69:3<479::AID-APP7>3.0.CO;2-D
  8. Ind. Eng. Chem. Res. v.37 Sorption of alcohol-toluene mixtures in poly (acrylic acid)-poly(vinyl alcohol) blend membranes and its role on pervaportation H.C.Park;R.M.Meertens;M.H.V.Mulder https://doi.org/10.1021/ie980117k
  9. Membrane J. v.8 Pervaporation separation of MTBE-methanol mixture using PVA/PAA crosslinked membranes J.W.Rhim;Y.K.Kim
  10. Membrane J. v.11 Salt effect of metal ion substituted membranes for water-alcohol systems using pervaporation processes J.W.Rhim;J.H.Jun
  11. Membrane J. v.12 Studies on the methanol permeability through PVA/SSA ion exchange membranes substituted with various metal cations C.S.Lee;S.Y.Jung;J.H.Jun;H.S.Shin;J.W.Rhim
  12. Membrane J. v.12 Preparation and characterization of ion exchange membrane for direct methanol fuel cell (DMFC) using sulfonated polysulfone H.S.Shin;C.S.Lee;J.H.Jun;S.Y.Jung;J.W.Rhim;S.Y.Nam
  13. Membrane J. v.12 Pervaporation separation of aqueous ethanol solution through poly(vinyl alcohol) membranes crosslinked poly(acrylic acid-co-maleic acid) S.Y.Nam;K.S.Sung;S.W.Cheon;J.W.Rhim
  14. Membrane J. v.13 The effect of PAA on the characterization of PVA/SSA ion exchange membrane S.W.Cheon;S.H.Hong;H.S.Hwang;S.I.Jeong;J.W.Rhim
  15. J. Membr. Sci. Proton conductivity and methanol permeability of crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group J.W.Rhim;H.B.Park;C.S.Lee;J.H.Jun;Y.M.Lee
  16. J. Electrochem. Sci. v.15 Proton and methanol transport in poly(perfluorosulfonate)membranes containing Cs$^{+}$ and H$^{+}$ cations V.Tricoli
  17. Diffusion E.L.Cussler
  18. 膜學實驗法 中垣正幸
  19. J. Mem. Soc. v.156 G.J.Hwang;Toshiyuki Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  20. Separation and Purification Technology v.14 W.Cui;J.Kerres;G.Eignberger https://doi.org/10.1016/S1383-5866(98)00069-0
  21. J. Membr. Sci. v.154 Pervaporation membranes in direct methanol fuel cells Bryan S. Pivovar;Yukin Wang;E.L.Cussler https://doi.org/10.1016/S0376-7388(98)00264-6
  22. J. Membr. Sci. v.156 Ion exchange membrane based on block copolymers. Part Ⅲ: preparation of cation exchange membrane G.J.Hwang;Toshiyuki Nagai https://doi.org/10.1016/S0376-7388(98)00331-7
  23. J. A. Electrochem. v.29 T.Lehtinen;G.Sundholm
  24. J. Membr. Sci. v.154 Sulfonated and crosslinked poly-phosphazene-based proton-exchange membranes Qunhui Guo.;Sally O'Connor;Peter N. Pintauro;Hao Tang https://doi.org/10.1016/S0376-7388(98)00282-8
  25. J. Membr. Sci. v.166 Ionomeric membranes based on partially sulfonated poly(styrene):synthesis, proton conduction and methanol permeation N.Carretta;V.Tricoli;F.Picchioni https://doi.org/10.1016/S0376-7388(99)00258-6
  26. J. Power Sources v.96 Modification of proton conduction membrane for reducing methanol crossover in a dircet-methanol fuel cell Won Choon Choi;Seong Ihl Woo https://doi.org/10.1016/S0378-7753(00)00602-9
  27. J. Power Sources v.84 A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells A.Heinzel;V.M.Barragan https://doi.org/10.1016/S0378-7753(99)00302-X