• 제목/요약/키워드: frontal collision

검색결과 48건 처리시간 0.019초

자율주행자동차 정면충돌평가방안 마련을 위한 국내 정면충돌사고 심층분석 연구 (An In-depth Analysis of Head-on Collision Accidents for Frontal Crash Tests of Automated Driving Vehicles)

  • 박요한;박원필;김승기
    • 자동차안전학회지
    • /
    • 제15권4호
    • /
    • pp.88-94
    • /
    • 2023
  • The seating postures of passengers in the automated driving vehicle are possible in atypical forms such as rear-facing and lying down. It is necessary to improve devices such as airbags and seat belts to protect occupants from injury in accidents of the automated driving vehicle, and collision safety evaluation tests must be newly developed. The purpose of this study is to define representative types of head-on collision accidents to develop collision standards for autonomous vehicles that take into account changes in driving behavior and occupants' postures. 150 frontal collision cases remained by filtering (accident videos, images, AIS 2+, passenger car, etc…) and random sampling from approximately 320,000 accidents claimed by a major insurance company over the past 5 years. The most frequent accident type is a head-on collision between a vehicle going straight and a vehicle turning left from the opposite side, accounting for 54.7% of all accidents, and most of these accidents occur in permissive left turns. The next most common frontal collision is the center-lane violation by drowsy driving and careless driving, accounting for 21.3% of the total. For the two types above, data such as vehicle speed, contact point/area, and PDOF at the moment of impact are obtained through accident reconstruction using PC-Crash. As a result, two types of autonomous vehicle crash safety test scenarios are proposed: (1) a frontal oblique collision test based on the accident types between a straight vehicle and a left-turning vehicle, and (2) a small overlap collision test based on the head-on accidents of center-lane violation.

레이져 스캐너를 이용한 전방 충돌 예측 알고리즘 개발 (Development of a Frontal Collision Detection Algorithm Using Laser Scanners)

  • 이동휘;한광진;조상민;김용선;허건수
    • 한국자동차공학회논문집
    • /
    • 제20권3호
    • /
    • pp.113-118
    • /
    • 2012
  • Collision detection plays a key role in collision mitigation system. The malfunction of the collision mitigation system can result in another dangerous situation or unexpected feeling to driver and passenger. To prevent this situation, the collision time, offset, and collision decision should be determined from the appropriate collision detection algorithm. This study focuses on a method to determine the time to collision (TTC) and frontal offset (FO) between the ego vehicle and the target object. The path prediction method using the ego vehicle information is proposed to improve the accuracy of TTC and FO. The path prediction method utilizes the ego vehicle motion data for better prediction performance. The proposed algorithm is developed based on laser scanner. The performance of the proposed detection algorithm is validated in simulations and experiments.

측면 충돌 시 센터에어백이 승객의 거동 및 머리상해에 미치는 영향 (The Effectiveness of Center Airbag on Passenger Kinematics and Head Injury in Side Collisions)

  • 박지양;김동섭;곽영찬;손창기;윤영한
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.7-12
    • /
    • 2018
  • The Korean New Car Assessment Program (KNCAP) is a program to evaluate the safety of automobiles. In the safety assessment method, there are frontal collision, partial frontal collision, side collision, pillar collision, and left stability in the collision safety category. Among them, Korean in-depth analysis data shows that there are a lot of side collision accidents and it is necessary to protect them. This study will analyze the side collision accident that occurred in actual traffic accident based on Korea In-Depth Accident Study (KIDAS) and investigate the effect of center airbag on passenger in under side collision. In addition, with simulated side collision scenarios in the various side impact directions, it was investigated how the center airbag affects the driver and passenger in terms of kinematic and injury levels.

DYNAMIC MODELING AND ANALYSIS OF VEHICLE SMART STRUCTURES FOR FRONTAL COLLISION IMPROVEMENT

  • Elemarakbi, A.M.;Zu, J.W.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.247-255
    • /
    • 2004
  • The majority of real world frontal collisions involves partial overlap (offset) collision, in which only one of the two longitudinal members is used for energy absorption. This leads to dangerous intrusions of the passenger compartment. Excessive intrusion is usually generated on the impacted side causing higher contact injury risk on the occupants compared with full frontal collision. The ideal structure needs to have extendable length when the front-end structure is not capable to absorb crash energy without violating deceleration pulse requirements. A smart structure has been proposed to meet this ideal requirement. The proposed front-end structure consists of two hydraulic cylinders integrated with the front-end longitudinal members of standard vehicles. The work carried out in this paper includes developing and analyzing mathematical models of two different cases representing vehicle-to-vehicle and vehicle-to-barrier in full and offset collisions. By numerical crash simulations, this idea has been evaluated and optimized. It is proven form numerical simulations that the smart structures bring significantly lower intrusions and decelerations. In addition, it is shown that the mathematical models are valid, flexible, and can be used in an effective way to give a quick insight of real life crashes.

Research and Calculate 29/34-Seat Passenger Cars to Ensure Safety for Occupants in the Event of a Collision According to ECE R94 Standards

  • Vu Hoang, Phuong;Nguyen Cong, Thanh;Nguyen Quoc, Tuan;Ta Hong Thanh, Tu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권1호
    • /
    • pp.140-144
    • /
    • 2023
  • In recent years, there are so many serious crashes involving coaches, especially the frontal collision occupies 40% of the front of the vehicle, Frontal collisions account for 100% of the front of the vehicle affecting the driver and side-impact collisions that injure the person in the vehicle. Therefore, the research into improving and optimizing the structure is necessary for risk of injury for passengers in frontal accidents. In this paper, we have designed a Shock absorber that can absorb collision energy. Research using HYPERMESH software. to build the finite element model and calculate the meshing to suit the mesh size of 5mm. apply LS-DYNA software to calculate structural strength. In the study, for a vehicle to collide with a hard obstacle occupying 100% of the head of the vehicle. Then, the experimental design method, Minitab is used for find the structural parameters in the design. Improvement results showed that the acceleration of the impact on passengers and the driver is decreased by 55,17%. The mass of texture improvements is reduced by 11%, according to the requirements of European Standards ECE R94.

자동차 충돌해석에 의한 단순화된 차체 강성 방정식의 유도 (The Derivation of Simplified Vehicle Body Stiffness Equation Using Collision Analysis)

  • 장인식;채덕병
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.177-185
    • /
    • 2000
  • The deformation characteristics is one of the major factors to resume the crash configuration in collision accident reconstruction. Crash analysis are carried out using finite element method and body stiffness equations representing force-deformation relationship are derived, Two different crash conditions : 1) frontal barrier impact 2) frontal impact between cars are given for the derivation of the equations. The stiffness coefficient of equation by method 2) is larger than that by method. 1). Crash analysis between two vehicles is accomplished with three crash angles and three velocities for each angle condition. The deformations are measured for six selected points and deformation energies are calculated using the derived equations. Equation by method 2) results in better estimation of deformation energy than that by method 1) for all crush configurations. The estimated energies can be utilized as one of indices to identify the type of the collision accident result.

  • PDF

정면충돌의 충돌방향과 관련된 운전자의 행동분석 (Analysis of driver behavior related to frontal vehicle collision direction)

  • 이명렬;김호중;이강현;김상철;이효주;최효정
    • 한국산학기술학회논문지
    • /
    • 제17권5호
    • /
    • pp.530-537
    • /
    • 2016
  • 본 연구는 정면충돌사고를 분석하여 충돌방향과 관련된 운전저의 행동변화를 분석하고, 인체손상정도를 파악해보고자 한다. 연구기간은 2013년 8월~2014년 1월까지로 응급의학 팀에 의해 차량의 손상정도와 인체상해 데이터를 수집하였다. 자료수집에서 사고차량, 사고방향 등은 KIDAS(Korea In-depth Accident Study; 한국형 교통사고 심층조사)와 인체손상정보에 기반을 둔 ISS(Injury Severity Score; 인체손상점수) 내용을 수집하였다. 자료분석은 Minitab 17과 SPSS 22.0을 이용하여 빈도분석과 ANOVA분석을 시행하였다. 분석결과 정면충돌은 12시 방향에서 55.8%로 가장 높게 나타났다. 연령에 따른 정면충돌 방향을 분석해 본 결과 11시방향이 평균 $46.46{\pm}13.47$세, 12시방향이 $44.43{\pm}13.40$세, 1시 방향에서 $52.46{\pm}12.04$세로 통계적으로 유의하게 연령이 높을수록 1시 방향에서 높게 나타났다(p<0.05). 남자의 연령에 따른 정면충돌 방향에서도 11시방향이 $47.10{\pm}13.88$세, 12시방향이 $45.24{\pm}13.78$세, 1시 방향에서 $55.73{\pm}13.38$세로 연령이 증가함에 따라 1시방향의 충돌이 높게 나타났다(p<0.05). 그러나 여자의 경우 연령에 따른 정면충돌 방향에서는 통계적으로 유의하지 않았다(p>0.05). 남녀의 연령에 따른 충돌방향에서의 ISS점수를 비교해봤을 때 남자의 경우 $ISS{\geq}9$에서 12시방향 충돌은 감소하고 ISS<9에서 1시방향 충돌이 증가하였다(p<0.05). 결과적으로 정면충돌방향은 12시 방향에서 가장 높은 빈도로 일어나고, 연령이 증가할수록 정면충돌 방향이 1시 방향으로 높아져 ISS점수가 낮아진다. 따라서 남성에서 12시방향 충돌을 인지하고 핸들을 왼쪽으로 틀어 1시 방향 충돌로 바꾸어 신체손상을 줄이려는 행동을 한다.

정면충돌에서 노인운전자의 중증도에 영향을 주는 요인 분석 (An Analysis of Factors Affecting Severity of Elderly Driver in Frontal Collision)

  • 전혁진
    • 한국화재소방학회논문지
    • /
    • 제33권2호
    • /
    • pp.139-144
    • /
    • 2019
  • 노인인구의 증가로 노인운전자의 손상과 사망자도 증가하였다. 하지만 노인운전자의 손상과 중증도에 대한 연구는 활발히 이루어지지 않아 영향 요인을 파악하지 못하고 있다. 본 연구에서는 정면충돌에서의 노인운전자에 손상과 중증도에 영향을 미치는 요인을 찾아 중증도 분류에 추가적으로 활용하고자 하였다. Collision Deformation Classification Code를 통해 차량 파손 정도를 확인하였으며 간편손상척도(Abbreviated Injury Scale, AIS)로 손상부위와 정도를, 손상중증도점수(Injury Severity Score, ISS)로 환자의 중증도를 확인하였다. 중증외상환자의 발생률은 5이상의 차량 파손 정도를 가진 대상자에서 Odds ratio가 7.381로 나타났으며 선형회귀분석을 통한 중증도 요인 분석에서도 차량 파손 정도의 ${\beta}$값이 0.453으로 나타났다. 따라서 5이상의 차량 파손 정도는 노인운전자에서 중증도 분류에 추가적으로 활용될 수 있는 기준으로 제안될 수 있다.

충돌해석을 이용한 전기자동차 복합소재 프레임 배터리 케이스에 관한 연구 (A Study on Electric Vehicle Composite Material Frame Battery Case Using Collision Analysis)

  • 이영진;이상찬
    • 한국기계가공학회지
    • /
    • 제21권1호
    • /
    • pp.15-21
    • /
    • 2022
  • Collision analysis involving a vehicle frame that includes a battery and a battery case was performed using a carbon fiber composite material (CFRP) and a glass fiber-reinforced plastic (GFRP), which are lightweight materials. Three types of collisions were analyzed: frontal collisions, partial frontal collisions, and side collisions. The maximum stress and deformation levels were measured for each case. To evaluate the stability of ignition and explosion potential of the battery, the maximum stress of the frame was measured before measuring the direct stress to confirm whether the collision energy was sufficiently absorbed. The deformation level of the battery case was measured to confirm whether the battery case affects the battery directly.

차체 추요 부재의 강성이 정면 충돌 거동에 미치는 영향 (Effect of the Main Structure Stiffness on the Frontal Collision Behavior)

  • 김천욱;한병기;김종찬;정훈
    • 한국자동차공학회논문집
    • /
    • 제10권4호
    • /
    • pp.234-241
    • /
    • 2002
  • In this study, the car crash analysis that simulates the crushing behavior of car forestructure during a frontal impact is carried out. The analysis model for front impact of a car consists of the lumped mass and the spring model. The characteristics value of masses and springs is obtained from the static analysis of a target car. The deceleration-time curve obtained from the simulation are compared with NCAP test data from the NHTSA. They show a good agreement with frontal crash test data. The deceleration-time curve of passenger compartment is classified into 3 stages; beginning stage, middle stage, and last stage. And the behavior of masses at each stage is explained. The effect of stiffness variation on deceleration of passenger compartment is resolved. The maximum loaded peak-time of torque box and dash is the main factor to control the passenger compartment's maximum deceleration.