• 제목/요약/키워드: front

Search Result 8,070, Processing Time 0.039 seconds

Structure of the Phytoplanktonic communities in Jeju Strait and Northern East China Sea and Dinoflagellate Blooms in Spring 2004: Analysis of Photosynthetic Pigments (봄철 제주해협과 동중국해 북부해역에서 식물플랑크톤의 광합성 색소분석을 이용한 군집 분포 특성과 dinoflagellate 적조)

  • Park, Mi-Ok;Kang, Sung-Won;Lee, Chung-Il;Choi, Tae-Seob;Lantoine, Francois
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.27-41
    • /
    • 2008
  • Distribution characteristics of phytoplankton community were investigated by HPLC and flow cytometry in Jeju Strait and the Northern East China Sea (NECS) in May 2004, in order to understand the relationship between physical environmental factors and distribution pattern of phytoplankton communities. Based on temperature and salinity data, three distinct water masses were identified; warm and saline Tsushima Warm Current (TWC), which is flowing from northwest of Jeju Island, warm and low saline water at the center of Jeju Strait, which is originated from China Coastal Water (CCW) and relatively cold and high saline water originated from Yellow Sea at the bottom of the Jeju Strait. At Jeju Strait, less saline water (<33 psu) of 15 km width occupied surface layer up to 20 m which located at 20 km offshore and strong thermal front between warm and saline water and cold and less saline water was found in the middle of the Jeju Strait. Vertical transect of temperature and salinity at the NECS also showed that low saline (<33 psu) water occupied the upper 20 m layer and cold and saline water was present at the eastern part. Chl a was measured as $0.06{\sim}3.07\;{\mu}g/L$. Spring bloom of phytoplankton was recognized by the high concentrations of Chl a at the low saline water masses influenced by the CCW and subsurface chlorophyll maximum layer appeared between $20{\sim}30\;m$ depth, which was at thermocline depth or below. Abundances of Synechococcus and picoeukaryote were $0.2{\sim}9.5{\times}10^4\;cells/mL$ and $0.43{\sim}4.3{\times}10^4\;cells/mL$, respectively. Dinoflagellate, diatom and prymnesiophyte were major groups and minor groups were chlorophyte+prasinophyte, chrysophyte, cryptophyte and cyanophyte. Especially high abundance of dinoflagellate was identified by high concentration (>1\;{\mu}g/L$) of peridinin at the bottom of the thermocline, which showed an outbreak of red tide by high density of dinoflagellates. Abundances of picoeukaryote in Jeju Strait were about $5{\sim}10$ times higher than abundance measured in Kuroshio water and showed a good correlation with Chl b (Pras+Viola), which implies the most of population of picoeukaryote was composed of prasinophytes. Prochlorococcus was not detected at all, which suggests that Kuroshio Current did not directly influenced on the study area. Based on the strong negative correlations between biomass of phytoplankton (Chl a) and temperature+salinity, the primary production and biomass of phytoplankton in the study area were controlled by the nutrients supply from CCW.

Implementing RPA for Digital to Intelligent(D2I) (디지털에서 인텔리전트(D2I)달성을 위한 RPA의 구현)

  • Dong-Jin Choi
    • Information Systems Review
    • /
    • v.21 no.4
    • /
    • pp.143-156
    • /
    • 2019
  • Types of innovation can be categorized into simplification, information, automation, and intelligence. Intelligence is the highest level of innovation, and RPA can be seen as one of intelligence. Robotic Process Automation(RPA), a software robot with artificial intelligence, is an example of intelligence that is suited for simple, repetitive, large-scale transaction processing tasks. The RPA, which is already in operation in many companies in Korea, shows what needs to be done to naturally focus on the core tasks in a situation where the need for a strong organizational culture is increasing and the emphasis is on voluntary leadership, strong teamwork and execution, and a professional working culture. The introduction was considered naturally according to the need to find. Robotic Process Automation, or RPA, is a technology that replaces human tasks with the goal of quickly and efficiently handling structural tasks. RPA is implemented through software robots that mimic humans using software such as ERP systems or productivity tools. RPA robots are software installed on a computer and are called robots by the principle of operation. RPA is integrated throughout the IT system through the front end, unlike traditional software that communicates with other IT systems through the back end. In practice, this means that software robots use IT systems in the same way as humans, repeat the correct steps, and respond to events on the computer screen instead of communicating with the system's application programming interface(API). Designing software that mimics humans to communicate with other software can be less intuitive, but there are many advantages to this approach. First, you can integrate RPA with virtually any software you use, regardless of your openness to third-party applications. Many enterprise IT systems are proprietary because they do not have many common APIs, and their ability to communicate with other systems is severely limited, but RPA solves this problem. Second, RPA can be implemented in a very short time. Traditional software development methods, such as enterprise software integration, are relatively time consuming, but RPAs can be implemented in a relatively short period of two to four weeks. Third, automated processes through software robots can be easily modified by system users. While traditional approaches require advanced coding techniques to drastically modify how they work, RPA can be instructed by modifying relatively simple logical statements, or by modifying screen captures or graphical process charts of human-run processes. This makes RPA very versatile and flexible. This RPA is a good example of the application of digital to intelligence(D2I).

Ecological Changes of Insect-damaged Pinus densiflora Stands in the Southern Temperate Forest Zone of Korea (I) (솔잎혹파리 피해적송림(被害赤松林)의 생태학적(生態学的) 연구(研究) (I))

  • Yim, Kyong Bin;Lee, Kyong Jae;Kim, Yong Shik
    • Journal of Korean Society of Forest Science
    • /
    • v.52 no.1
    • /
    • pp.58-71
    • /
    • 1981
  • Thecodiplosis japonesis is sweeping the Pinus densiflora forests from south-west to north-east direction, destroying almost all the aged large trees as well as even the young ones. The front line of infestation is moving slowly but ceaselessly norhwards as a long bottle front. Estimation is that more than 40 percent of the area of P. densiflora forest has been damaged already, however some individuals could escapes from the damage and contribute to restore the site to the previous vegetation composition. When the stands were attacked by this insect, the drastic openings of the upper story of tree canopy formed by exclusively P. densiflora are usually resulted and some environmental factors such as light, temperature, litter accumulation, soil moisture and offers were naturally modified. With these changes after insect invasion, as the time passes, phytosociologic changes of the vegetation are gradually proceeding. If we select the forest according to four categories concerning the history of the insect outbreak, namely, non-attacked (healthy forest), recently damaged (the outbreak occured about 1-2 years ago), severely damaged (occured 5-6 years ago), damage prolonged (occured 10 years ago) and restored (occured about 20 years ago), any directional changes of vegetation composition could be traced these in line with four progressive stages. To elucidate these changes, three survey districts; (1) "Gongju" where the damage was severe and it was outbroken in 1977, (2) "Buyeo" where damage prolonged and (3) "Gochang" as restored, were set, (See Tab. 1). All these were located in the south temperate forest zone which was delimited mainly due to the temporature factor and generally accepted without any opposition at present. In view of temperature, the amount and distribution of precipitation and various soil factor, the overall homogeneity of environmental conditions between survey districts might be accepted. However this did not mean that small changes of edaphic and topographic conditions and microclimates can induce any alteration of vegetation patterns. Again four survey plots were set in each district and inter plot distance was 3 to 4 km. And again four subplots were set within a survey plot. The size of a subplot was $10m{\times}10m$ for woody vegetation and $5m{\times}5m$ for ground cover vegetation which was less than 2 m high. The nested quadrat method was adopted. In sampling survey plots, the followings were taken into account: (1) Natural growth having more than 80 percent of crown density of upper canopy and more than 5 hectares of area. (2) Was not affected by both natural and artificial disturbances such as fire and thinning operation for the past three decades. (3) Lower than 500 m of altitude (4) Less than 20 degrees of slope, and (5) Northerly sited aspect. An intensive vegetation survey was undertaken during the summer of 1980. The vegetation was devided into 3 categories for sampling; the upper layer (dominated mainly by the pine trees), the middle layer composed by oak species and other broad-leaved trees as well as the pine, and the ground layer or the lower layer (shrubby form of woody plants). In this study our survey was concentrated on woody species only. For the vegetation analysis, calculated were values of intensity, frequency, covers, relative importance, species diversity, dominance and similarity and dissimilasity index when importance values were calculated, different relative weights as score were arbitrarily given to each layer, i.e., 3 points for the upper layer, 2 for the middle layer and 1 for the ground layer. Then the formula becomes as follows; $$R.I.V.=\frac{3(IV\;upper\;L.)+2(IV.\;middle\;L.)+1(IV.\;ground\;L.)}{6}$$ The values of Similarity Index were calculated on the basis of the Relative Importance Value of trees (sum of relative density, frequency and cover). The formula used is; $$S.I.=\frac{2C}{S_1+S_2}{\times}100=\frac{2C}{100+100}{\times}100=C(%)$$ Where: C = The sum of the lower of the two quantitative values for species shared by the two communities. $S_1$ = The sum of all values for the first community. $S_2$ = The sum of all values for the second community. In Tab. 3, the species composition of each plot by layer and by district is presented. Without exception, the species formed the upper layer of stands was Pinus densiflora. As seen from the table, the relative cover (%), density (number of tree per $500m^2$), the range of height and diameter at brest height and cone bearing tendency were given. For the middle layer, Quercus spp. (Q. aliena, serrata, mongolica, accutissina and variabilis) and Pinus densiflora were dominating ones. Genus Rhodedendron and Lespedeza were abundant in ground vegetation, but some oaks were involved also. (1) Gongju district The total of woody species appeared in this district was 26 and relative importance value of Pinus densiflora for the upper layer was 79.1%, but in the middle layer, the R.I.V. for Quercus acctissima, Pinus densiflora, and Quercus aliena, were 22.8%, 18.7% and 10.0%, respectively, and in ground vegetation Q. mongolica 17.0%, Q. serrata 16.8% Corylus heterophylla 11.8%, and Q. dentata 11.3% in order. (2) Buyeo district. The number of species enumerated in this district was 36 and the R.I.V. of Pinus densiflora for the uppper layer was 100%. In the middle layer, the R.I.V. of Q. variabilis and Q. serrata were 8.6% and 8.5% respectively. In the ground vegetative 24 species were counted which had no more than 5% of R.I.V. The mean R.I.V. of P.densiflora ( totaling three layers ) and averaging four plots was 57.7% in contrast to 46.9% for Gongju district. (3) Gochang-district The total number of woody species was 23 and the mean R.I.V. of Pinus densiflora was 66.0% showing greater value than those for two former districts. The next high value was 6.5% for Q. serrata. As the time passes since insect outbreak, the mean R.I.V. of P. densiflora increased as the following order, 46.9%, 57.7% and 66%. This implies that P. densiflora was getting back to its original dominat state again. The pooled importance of Genus Quercus was decreasing with the increase of that for Pinus densiflora. This trend was contradict to the facts which were surveyed at Kyonggi-do area (the central temperate forest zone) reported previously (Yim et al, 1980). Among Genus Quercus, Quercus acutissina, warm-loving species, was more abundant in the southern temperature zone to which the present research is concerned than the central temperate zone. But vice-versa was true with Q. mongolica, a cold-loving one. The species which are not common between the present survey and the previous report are Corpinus cordata, Beltala davurica, Wisturia floribunda, Weigela subsessilis, Gleditsia japonica var. koraiensis, Acer pseudosieboldianum, Euonymus japonica var. macrophylla, Ribes mandshuricum, Pyrus calleryana var. faruiei, Tilia amurensis and Pyrus pyrifolia. In Figure 4 and Table 5, Maximum species diversity (maximum H'), Species diversity (H') and Eveness (J') were presented. The Similarity indices between districts were shown in Tab. 5. Seeing Fig. 6, showing two-dimensional ordination of polts on the basis of X and Y coordinates, Ai plots aggregate at the left site, Bi plots at lower site, and Ci plots at upper-right site. The increasing and decreasing patterns as to Relative Density and Relative Importance Value by genus or species were given in Fig. 7. Some of the patterns presented here are not consistent with the previously reported ones (Yim, et al, 1980). The present authors would like to attribute this fact that two distinct types of the insect attack, one is the short war type occuring in the south temperate forest zone, which means that insect attack went for a few years only, the other one is a long-drawn was type observed at the temperate forest zone in which the insect damage went on continuously for several years. These different behaviours of infestation might have resulted the different ways of vegetational change. Analysing the similarity indices between districts, the very convincing results come out that the value of dissimilarity index between A and B was 30%, 27% between B and C and 35% between A and C (Table 6). The range of similarity index was obtained from the calculation of every possible combinations of plots between two districts. Longer time isolation between communities has brought the higher value of dissimilarity index. The main components of ground vegetation, 10 to 20 years after insect outbreak, become to be consisted of mainly Genus Lespedeza and Rhododendron. Genus Quercus which relate to the top dorminant state for a while after insect attack was giving its place to Pinus densiflora. It was implied that, provided that the soil fertility, soil moisture and soil depth were good enough, Genus Quercuss had never been so easily taken ever by the resistant speeies like Pinus densiflora which forms the edaphic climax at vast areas of forest land. Usually they refer Quercus to the representative component of the undisturbed natural forest in the central part of this country.

  • PDF

The lesson From Korean War (한국전쟁의 교훈과 대비 -병력수(兵力數) 및 부대수(部隊數)를 중심으로-)

  • Yoon, Il-Young
    • Journal of National Security and Military Science
    • /
    • s.8
    • /
    • pp.49-168
    • /
    • 2010
  • Just before the Korean War, the total number of the North Korean troops was 198,380, while that of the ROK(Republic of Korea) army troops 105,752. That is, the total number of the ROK army troops at that time was 53.3% of the total number of the North Korean army. As of December 2008, the total number of the North Korean troops is estimated to be 1,190,000, while that of the ROK troops is 655,000, so the ROK army maintains 55.04% of the total number of the North Korean troops. If the ROK army continues to reduce its troops according to [Military Reform Plan 2020], the total number of its troops will be 517,000 m 2020. If North Korea maintains the current status(l,190,000 troops), the number of the ROK troops will be 43.4% of the North Korean army. In terms of units, just before the Korean War, the number of the ROK army divisions and regiments was 80% and 44.8% of North Korean army. As of December 2008, North Korea maintains 86 divisions and 69 regiments. Compared to the North Korean army, the ROK army maintains 46 Divisions (53.4% of North Korean army) and 15 regiments (21.3% of North Korean army). If the ROK army continue to reduce the military units according to [Military Reform Plan 2020], the number of ROK army divisions will be 28(13 Active Division, 4 Mobilization Divisions and 11 Local Reserve Divisions), while that of the North Korean army will be 86 in 2020. In that case, the number of divisions of the ROK army will be 32.5% of North Korean army. During the Korean war, North Korea suddenly invaded the Republic of Korea and occupied its capital 3 days after the war began. At that time, the ROK army maintained 80% of army divisions, compared to the North Korean army. The lesson to be learned from this is that, if the ROK army is forced to disperse its divisions because of the simultaneous invasion of North Korea and attack of guerrillas in home front areas, the Republic of Korea can be in a serious military danger, even though it maintains 80% of military divisions of North Korea. If the ROK army promotes the plans in [Military Reform Plan 2020], the number of military units of the ROK army will be 32.5% of that of the North Korean army. This ratio is 2.4 times lower than that of the time when the Korean war began, and in this case, 90% of total military power should be placed in the DMZ area. If 90% of military power is placed in the DMZ area, few troops will be left for the defense of home front. In addition, if the ROK army continues to reduce the troops, it can allow North Korea to have asymmetrical superiority in military force and it will eventually exert negative influence on the stability and peace of the Korean peninsular. On the other hand, it should be reminded that, during the Korean War, the Republic of Korea was attacked by North Korea, though it kept 53.3% of troops, compared to North Korea. It should also be reminded that, as of 2008, the ROK army is defending its territory with the troops 55.04% of North Korea. Moreover, the national defense is assisted by 25,120 troops of the US Forces in Korea. In case the total number of the ROK troops falls below 43.4% of the North Korean army, it may cause social unrest about the national security and may lead North Korea's misjudgement. Besides, according to Lanchester strategy, the party with weaker military power (60% compared to the party with stronger military power) has the 4.1% of winning possibility. Therefore, if we consider the fact that the total number of the ROK army troops is 55.04% of that of the North Korean army, the winning possibility of the ROK army is not higher than 4.1%. If the total number of ROK troops is reduced to 43.4% of that of North Korea, the winning possibility will be lower and the military operations will be in critically difficult situation. [Military Reform Plan 2020] rums at the reduction of troops and units of the ground forces under the policy of 'select few'. However, the problem is that the financial support to achieve this goal is not secured. Therefore, the promotion of [Military Reform Plan 2020] may cause the weakening of military defence power in 2020. Some advanced countries such as Japan, UK, Germany, and France have promoted the policy of 'select few'. However, what is to be noted is that the national security situation of those countries is much different from that of Korea. With the collapse of the Soviet Unions and European communist countries, the military threat of those European advanced countries has almost disappeared. In addition, the threats those advanced countries are facing are not wars in national level, but terrorism in international level. To cope with the threats like terrorism, large scaled army trops would not be necessary. So those advanced European countries can promote the policy of 'select few'. In line with this, those European countries put their focuses on the development of military sections that deal with non-military operations and protection from unspecified enemies. That is, those countries are promoting the policy of 'select few', because they found that the policy is suitable for their national security environment. Moreover, since they are pursuing common interest under the European Union(EU) and they can form an allied force under NATO, it is natural that they are pursing the 'select few' policy. At present, NATO maintains the larger number of troops(2,446,000) than Russia(l,027,000) to prepare for the potential threat of Russia. The situation of japan is also much different from that of Korea. As a country composed of islands, its prime military focus is put on the maritime defense. Accordingly, the development of ground force is given secondary focus. The japanese government promotes the policy to develop technology-concentrated small size navy and air-forces, instead of maintaining large-scaled ground force. In addition, because of the 'Peace Constitution' that was enacted just after the end of World War II, japan cannot maintain troops more than 240,000. With the limited number of troops (240,000), japan has no choice but to promote the policy of 'select few'. However, the situation of Korea is much different from the situations of those countries. The Republic of Korea is facing the threat of the North Korean Army that aims at keeping a large-scale military force. In addition, the countries surrounding Korea are also super powers containing strong military forces. Therefore, to cope with the actual threat of present and unspecified threat of future, the importance of maintaining a carefully calculated large-scale military force cannot be denied. Furthermore, when considering the fact that Korea is in a peninsular, the Republic of Korea must take it into consideration the tradition of continental countries' to maintain large-scale military powers. Since the Korean War, the ROK army has developed the technology-force combined military system, maintaining proper number of troops and units and pursuing 'select few' policy at the same time. This has been promoted with the consideration of military situation in the Koran peninsular and the cooperation of ROK-US combined forces. This kind of unique military system that cannot be found in other countries can be said to be an insightful one for the preparation for the actual threat of North Korea and the conflicts between continental countries and maritime countries. In addition, this kind of technology-force combined military system has enabled us to keep peace in Korea. Therefore, it would be desirable to maintain this technology-force combined military system until the reunification of the Korean peninsular. Furthermore, it is to be pointed out that blindly following the 'select few' policy of advanced countries is not a good option, because it is ignoring the military strategic situation of the Korean peninsular. If the Republic of Korea pursues the reduction of troops and units radically without consideration of the threat of North Korea and surrounding countries, it could be a significant strategic mistake. In addition, the ROK army should keep an eye on the fact the European advanced countries and Japan that are not facing direct military threats are spending more defense expenditures than Korea. If the ROK army reduces military power without proper alternatives, it would exert a negative effect on the stable economic development of Korea and peaceful reunification of the Korean peninsular. Therefore, the desirable option would be to focus on the development of quality of forces, maintaining proper size and number of troops and units under the technology-force combined military system. The tableau above shows that the advanced countries like the UK, Germany, Italy, and Austria spend more defense expenditure per person than the Republic of Korea, although they do not face actual military threats, and that they keep achieving better economic progress than the countries that spend less defense expenditure. Therefore, it would be necessary to adopt the merits of the defense systems of those advanced countries. As we have examined, it would be desirable to maintain the current size and number of troops and units, to promote 'select few' policy with increased defense expenditure, and to strengthen the technology-force combined military system. On the basis of firm national security, the Republic of Korea can develop efficient policies for reunification and prosperity, and jump into the status of advanced countries. Therefore, the plans to reduce troops and units in [Military Reform Plan 2020] should be reexamined. If it is difficult for the ROK army to maintain its size of 655,000 troops because of low birth rate, the plans to establish the prompt mobilization force or to adopt drafting system should be considered for the maintenance of proper number of troops and units. From now on, the Republic of Korean government should develop plans to keep peace as well as to prepare unexpected changes in the Korean peninsular. For the achievement of these missions, some options can be considered. The first one is to maintain the same size of military troops and units as North Korea. The second one is to maintain the same level of military power as North Korea in terms of military force index. The third one is to maintain the same level of military power as North Korea, with the combination of the prompt mobilization force and the troops in active service under the system of technology-force combined military system. At present, it would be not possible for the ROK army to maintain such a large-size military force as North Korea (1,190,000 troops and 86 units). So it would be rational to maintain almost the same level of military force as North Korea with the combination of the troops on the active list and the prompt mobilization forces. In other words, with the combination of the troops in active service (60%) and the prompt mobilization force (40%), the ROK army should develop the strategies to harmonize technology and forces. The Korean government should also be prepared for the strategic flexibility of USFK, the possibility of American policy change about the location of foreign army, radical unexpected changes in North Korea, the emergence of potential threat, surrounding countries' demand for Korean force for the maintenance of regional stability, and demand for international cooperation against terrorism. For this, it is necessary to develop new approaches toward the proper number and size of troops and units. For instance, to prepare for radical unexpected political or military changes in North Korea, the Republic of Korea should have plans to protect a large number of refugees, to control arms and people, to maintain social security, and to keep orders in North Korea. From the experiences of other countries, it is estimated that 115,000 to 230,000 troops, plus ten thousands of police are required to stabilize the North Korean society, in the case radical unexpected military or political change happens in North Korea. In addition, if the Republic of Korea should perform the release of hostages, control of mass destruction weapons, and suppress the internal wars in North Korea, it should send 460,000 troops to North Korea. Moreover, if the Republic of Korea wants to stop the attack of North Korea and flow of refugees in DMZ area, at least 600,000 troops would be required. In sum, even if the ROK army maintains 600,000 troops, it may need additional 460,000 troops to prepare for unexpected radical changes in North Korea. For this, it is necessary to establish the prompt mobilization force whose size and number are almost the same as the troops in active service. In case the ROK army keeps 650,000 troops, the proper number of the prompt mobilization force would be 460,000 to 500,000.

  • PDF

Analysis of the Range Verification of Proton using PET-CT (Off-line PET-CT를 이용한 양성자치료에서의 Range 검증)

  • Jang, Joon Young;Hong, Gun Chul;Park, Sey Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.29 no.2
    • /
    • pp.101-108
    • /
    • 2017
  • Purpose: The proton used in proton therapy has a characteristic of giving a small dose to the normal tissue in front of the tumor site while forming a Bragg peak at the cancer tissue site and giving up the maximum dose and disappearing immediately. It is very important to verify the proton arrival position. In this study, we used the off-line PET CT method to measure the distribution of positron emitted from nucleons such as 11C (half-life = 20 min), 150 (half-life = 2 min) and 13N The range and distal falloff point of the proton were verified by measurement. Materials and Methods: In the IEC 2001 Body Phantom, 37 mm, 28 mm, and 22 mm spheres were inserted. The phantom was filled with water to obtain a CT image for each sphere size. To verify the proton range and distal falloff points, As a treatment planning system, SOBP were set at 46 mm on 37 mm sphere, 37 mm on 28 mm, and 33 mm on 22 mm sphere for each sphere size. The proton was scanned in the same center with a single beam of Gantry 0 degree by the scanning method. The phantom was scanned using PET-CT equipment. In the PET-CT image acquisition method, 50 images were acquired per minute, four ROIs including the spheres in the phantom were set, and 10 images were reconstructed. The activity profile according to the depth was compared to the dose profile according to the sphere size established in the treatment plan Results: The PET-CT activity profile decreased rapidly at the distal falloff position in the 37 mm, 28 mm, and 22 mm spheres as well as the dose profile. However, in the SOBP section, which is a range for evaluating the range, the results in the proximal part of the activity profile are different from those of the dose profile, and the distal falloff position is compared with the proton therapy plan and PET-CT As a result, the maximum difference of 1.4 mm at the 50 % point of the Max dose, 1.1 mm at the 45 % point at the 28 mm sphere, and the difference at the 22 mm sphere at the maximum point of 1.2 mm were all less than 1.5 mm in the 37 mm sphere. Conclusion: To maximize the advantages of proton therapy, it is very important to verify the range of the proton beam. In this study, the proton range was confirmed by the SOBP and the distal falloff position of the proton beam using PET-CT. As a result, the difference of the distally falloff position between the activity distribution measured by PET-CT and the proton therapy plan was 1.4 mm, respectively. This may be used as a reference for the dose margin applied in the proton therapy plan.

  • PDF

Wearable Art-Chameleon Dress (웨어러블 아트-카멜레온 드레스)

  • Cho, Kyoung-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.32 no.12
    • /
    • pp.1837-1847
    • /
    • 2008
  • The goal of this study is to express the image of chameleons-that change their colors by light, temperature and its mood-into the sexy styles of corresponding coquettish temperamental people in Wearable Art. The method used in this study was experimenting various production mediums, including creating the textured stretch fabric, in the process of expressing the conceptual characteristics of the chameleon in Wearable Art. The concept of the work was a concoction of 'tempting', 'splendid', 'brilliant', 'fascinating', etc. that highlighted the real disposition of the chameleon. The futuristic preference of the researcher was also implicated. "Comfortable" and "enjoyable" concepts via motions were improved with the its completeness. The point of the design and production is to express symbolically the chameleon in real life, analyzing its sleek body lines, conditional colors changing, outer skins and the cubic textures. The coquettish temperamental image, the conceptual image of the chameleon, was also expressed by implication into the whole work. The entire line of this work is body-conscious silhouette. It was symbolically selected to image the outline of the chameleon that has the slim and sleek body. The exposed back is intended to express symbolically the projected back bones of the chameleon. The hood of gentle triangle line expresses the smooth-lined head part. The irregular hemlines represent the elongated chameleon's tale. The chameleon with its colors of vivid tones is characterized the colors changing by its conditions. This point was importantly treated in the working process by trying the effects that the colors are seen slightly different according to the light and angles. The material was given the effect that its surface colors are seen different in lights and angles because of the wrinkles protruded lumpy-bumpy. The various stones of red and blue tones are very similar to the skin tones of the real chameleon, and their gradation makes the effect that the colors are visibly changed with each move. The textures of the chameleon were produced via the wrinkle effect of smoke-shape, which is the result of using the elastic threads on the basic mediums stitched with 50/50 chiffon and polyester along with velvet dot patterns. The stretching fabric by the impact of the elastic threads is as much suitable for making the body-conscious line. The stones are composed of acrylic cabochon and gemstone. They are symbolically expressed the lumpy and bumpy back skin of the chameleon and produced the effect of the colors visibly different. The primary technique used in this dress is the draping utilizing the biased grains. The front body piece is connected to the hood and joined to the back piece without any seam. For the irregular hemline flares, leaving the several rectangular pieces with bias grains, they were connected by interlocking. What defines the clothes is the person in action. Therefore, what decides the completeness of clothes might be its comfortable and enjoyable feeling by living and acting people. The chameleon dress could also reach its goal of comforting and pleasing Wearable Art in the process of studying the techniques and effects that visibly differentiate the colors. It is considered as a main point of the Wearable Art, which is a comfortable enjoyable clothing tempered with the artistic beauty.

Soil amendment for turfgrass vegetation of the Incheon International Airport runway side on the Yeongjong reclaimed land (인천국제공항 착륙대 잔디 식재 지반 조성을 위한 영종도 매립 토양 개량)

  • Yoo, Sun-Ho;Jeong, Yeong-Sang;Joo, Young-Kyu;Choi, Byung-Kwon;Wu, Heun-Young;Lee, Tae-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.2
    • /
    • pp.93-104
    • /
    • 2002
  • A field survey and experiment was conducted from 1996 to 1998 to develop rational technology for turfgrass vegetation of runway side of Incheon International Airport on the reclaimed tidal land in Young-Jong Island. Backfill of the experimental site was finished on August 1995. The experimental site was 8 ha located in the middle of the construction place for the main parking lot in front of the terminal building construction. The experimental field was drained by main open ditch, and divided three main plots, no subsurface tile drain, subsurface tile drain spacing with 22.5m, and with 45 m, respectively. The 17 sub plots were designed to test the effect of soil covering with red earth loam by 5 cm and 20 cm depth, application of chemical compound fertilizers and livestock manures, dressing of artifical soils and hydrophylic soil conditioners. The tested turfgrasses were three transplanting indigenous turfgrasses, Zoysia koreana, Zoysia sinica and Zoysia japonica, and two hydroseeding mixed exotic turgrasses, cool type I(tall fescue 30%, kentucky blue grass 40%, perenial ryegrass 30%), and cool type II(tall fescue 40%, perenial ryegrass 20%, fine fescue 20%, alkaligrass 20%). The soil backfilled with dredged seasand was sand textured with high salt concentration and low fertility. The soil showed high pH, low organic matter and low available phophate contents. The percolation rate was fast with high hydraulic conductivity. Desalinization was fast after installation of the main open drainage system. No subsurface tile drainage effect was found showing little difference in turfgrass growth. The covering and visual growth of turfgrasses were the best in the 20-cm soil covering with compound fertilizer treatment. The covering and visual growth of turfgrasses were satisfactory in the 5 cm soil covering with compound fertilizer treatment and with livestock manure treatments. The hydrophillic soil conditioner treatments were effective but expensive at present. The coverage and visual quality of turfgrasses were good for Zoysia koreana and Zoysia japonica. The coverages of turfgrasses by the hydroseeding with the mixed exotic turfgrasses were less than transplanting of native turfgrasses. In conclusion, for the runway side vegetation purposes, the subsurface tile drainage might not necessary as main open ditch drainage be sufficient due to fast percolation rate of the backfilled dredged seasand. The 5 cm soil covering with red earth might be sufficient for the runway side, but the 20 cm soil covering might be necessary for the runway side where high density of turfgrass coverage was necessary to protect from the airplance air blow.

A Study of Yangshangsun(楊上善)'s theory of three-yum and three-yang(三陰三陽) - focus on attribute of three-yum and three-yang(三陰三陽), the bolt-leaf-hanges(關闔樞) theory, large of small of gi-blood(氣血多少) (양상선(楊上善)의 삼음삼양(三陰三陽) 학설(學說)에 대한 연구 - 음양속성(陰陽屬性), 관합추(關闔樞), 기혈다소(氣血多少)를 중심으로 -)

  • Lee, Yong Bum
    • Journal of Korean Medical classics
    • /
    • v.10
    • /
    • pp.450-493
    • /
    • 1997
  • Three-yum and three-yang(三陰三陽) is the change state of yum-yang(陰陽) which is caused by six gi(六氣). They mean the flow of six gi(六氣) which exist throughout the viscera, the channel(經絡), and the skin. But it is not easy to understand the meaning because the contents of the attribute of three-yum and three-yang(三陰三陽), the bolt-leaf-hanges(關闔樞) theory and large or small of gi-blood(氣血多少) which is the main clue that explain it in ${\ll}$Somun(素問)${\gg}$ and ${\ll}$Yeongchu(靈樞)${\gg}$ don't coincide with each other. I, the writer, tried to understand the uncertain meaning and the contents which are written about three points above differently in each of the books that are ${\ll}$Somun(素問)${\gg}$ and ${\ll}$Yeongchu(靈樞)${\gg}$. So, from that the course that the book, ${\ll}$Huangjenegeong(黃帝內經)${\gg}$ is handed down is so relatively simple in a wood block-printed book, that the ${\ll}$Huangjenegeongtaeso(黃帝內經太素)${\gg}$ has less wong-words than the Somun(素問) and the Yeongchu(靈樞), and from that Yangshangsun(楊上善) wrote the note in the ${\ll}$Huangjenegeongtaeso(黃帝內經太素)${\gg}$ by royal order about 100 years former than Wangbing(王氷), as making projects of Yangshangsun(楊上善)'s note and the original of the ${\ll}$Huangjenegeongtaeso(黃帝內經太素)${\gg}$ which has relation to the yum-yang(陰陽) attribute of three-yum and three-yang(三陰三陽), the bolt-leaf-hanges(關闔樞) theory, and the large or small of gi-blood(氣血多少) and researching the Yangshangsun(楊上善)'s theory. The result is summarized like this. First, wherease the order of the change of three-yum and three-yang(三陰三陽) which is explained by Yangshangsun(楊上善) consider the change of yangi(陽氣) in body most important, the order of the change gaeggi(客氣)'s three-yum and three-yang(三陰三陽) considers chungi(天氣) most important, and the order of jugi(主氣)'s three-yum and three-yang(三陰三陽) considers jigi(地氣)'s change of ohaeng(五行) most important. If the order of change three-yum and three-yang(三陰三陽) in the ${\ll}$Huangjenegeongtaeso(黃帝內經太素)${\gg}$ is considered, each of taeyang(太陽) and soyum(少陰) are expressed as the base of yum-yang(陰陽) and yangmeong(陽明) and taeyum(太陰) are expressed as the palmy days of yum-yang(陰陽), soyang(少陽) and gyolyum(厥陰) are expressed as pacemaker(樞杻) which controls the change of yum-yang(陰陽). Thus, each has something in common that is fettered by the inside and outside. In the flow of channel(經絡), taeyang(太陽) and soyum(少陰) take charge of the behind of body, yangmeong(陽明) and taeyum(太陰) take charge of the front of body and soyang(少陽) and gyolyum(厥陰) take of the side of body. Second, in Yangshangsun(楊上善)'s bolt-leaf-hanges(關闔樞) theory, three-yum(三陰) is regarded as inside, three-yang(三陽) as outside, so when bolt, leaf and hanges fulfil their duties in inside and outside, the life(life force) is thought to be revealed normally. It is impossible to understand the bolt-leaf-hanges with the conception of the inside and outside which divide three-yum and three-yang(三陰三陽) into taeyang-soyum(太陽-少陰), yangmeong-taeyum(陽明-太陰), soyang-gyolyum(少陽-厥陰) according to yum-yang(陰陽) attribute, hence it need the special conception that is taeyang(太陽)-taeyum(太陰), yangmeong(陽明)-gyolyum(厥陰), soyang(少陽)-soyum(少陰) which center on their duties in inside and outside. In the denunciation of the word open(開) and bolt(關), because Yangshangsun(楊上善) said that the duities of taeyang(太陽) and taeyum(太陰) are shutter(閉禁), bolt(關) is coincided with that significance. Third, with explaining the large or small of gi-blood(氣血多少) of three-yum and three-yang(三陰三陽), Yangshangsun(楊上善) expressed the inside and outside either in the same way or differently. Because the inside and outside is interior of body and exterior of body, it is the explanation that is noticed by the fact that the property of large or small of gi-blood(氣血多少) is either able to be same or different. In this viewpoint, if we unite the contents about large or small of gi-blood(氣血多少) of ${\ll}$Somun(素問)${\gg}$, ${\ll}$Yeongchu(靈樞)${\gg}$, we will find that the descriptions of large or small of gi-blood(氣血多少) of three-yang(三陽) in ${\ll}$Somun(素問)${\gg}$ ${\ll}$Yeongchu(靈樞)${\gg}$ correspond with the ${\ll}$Huangjenegeongtaeso(黃帝內經太素)${\gg}$, but in three-yum(三陰), the contrary presentations exit. The reason is that large or small of gi-blood(氣血多少) of three-yum(三陰) isn't only expressed as che(體) in the point of che-yong(體用), but as a point of yong(用) that is a phenomenon. As researching the original of ${\ll}$Huangjenegeongtaeso(黃帝內經太素)${\gg}$ and Yangshangsun(楊上善)'s notes as a center about three problems that are yum-yang(陰陽) attribute, the bolt-leaf-hanges(關闔樞) and large or small of gi-blood(氣血多少) of three-yum and three-yang(三陰三陽), I, the writer, tried to explain the part which is written differently or has uncertain conception in the book ${\ll}$Somun(素問)${\gg}$ and the book ${\ll}$Yeongchu(靈樞)${\gg}$, but the concrete result of the work like this will be judged according to the question how many theories are correspondent with real presence at a sickbed. Hence, the work to veryfy the theories in the future will be left as assignment.

  • PDF

Study on PM10, PM2.5 Reduction Effects and Measurement Method of Vegetation Bio-Filters System in Multi-Use Facility (다중이용시설 내 식생바이오필터 시스템의 PM10, PM2.5 저감효과 및 측정방법에 대한 연구)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.5
    • /
    • pp.80-88
    • /
    • 2020
  • With the issuance of one-week fine dust emergency reduction measures in March 2019, the public's anxiety about fine dust is increasingly growing. In order to assess the application of air purifying plant-based bio-filters to public facilities, this study presented a method for measuring pollutant reduction effects by creating an indoor environment for continuous discharge of particle pollutants and conducted basic studies to verify whether indoor air quality has improved through the system. In this study conducted in a lecture room in spring, the background concentration was created by using mosquito repellent incense as a pollutant one hour before monitoring. Then, according to the schedule, the fine dust reduction capacity was monitored by irrigating for two hours and venting air for one hour. PM10, PM2.5, and temperature & humidity sensors were installed two meters front of the bio-filters, and velocity probes were installed at the center of the three air vents to conduct time-series monitoring. The average face velocity of three air vents set up in the bio-filter was 0.38±0.16 m/s. Total air-conditioning air volume was calculated at 776.89±320.16㎥/h by applying an air vent area of 0.29m×0.65m after deducing damper area. With the system in operation, average temperature and average relative humidity were maintained at 21.5-22.3℃, and 63.79-73.6%, respectively, which indicates that it satisfies temperature and humidity range of various conditions of preceding studies. When the effects of raising relatively humidity rapidly by operating system's air-conditioning function are used efficiently, it would be possible to reduce indoor fine dust and maintain appropriate relative humidity seasonally. Concentration of fine dust increased the same in all cycles before operating the bio-filter system. After operating the system, in cycle 1 blast section (C-1, β=-3.83, β=-2.45), particulate matters (PM10) were lowered by up to 28.8% or 560.3㎍/㎥ and fine particulate matters (PM2.5) were reduced by up to 28.0% or 350.0㎍/㎥. Then, the concentration of find dust (PM10, PM2.5) was reduced by up to 32.6% or 647.0㎍/㎥ and 32.4% or 401.3㎍/㎥ respectively through reduction in cycle 2 blast section (C-2, β=-5.50, β=-3.30) and up to 30.8% or 732.7㎍/㎥ and 31.0% or 459.3㎍/㎥ respectively through reduction in cycle 3 blast section (C-3, β=5.48, β=-3.51). By referring to standards and regulations related to the installation of vegetation bio-filters in public facilities, this study provided plans on how to set up objective performance evaluation environment. By doing so, it was possible to create monitoring infrastructure more objective than a regular lecture room environment and secure relatively reliable data.

A Study on the Cultural Landscape Metamorphosis of ChoYeon Pavilion's Garden in SoonCheon City (순천 초연정(超然亭) 원림의 문화경관 변용 양상)

  • Kahng, Byung-Seon;Lee, Seung-Yoen;Shin, Sang-Sup
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.35 no.3
    • /
    • pp.13-21
    • /
    • 2017
  • The Cho-yeon Pavilion located in the Wangdae village in Samcheong-ri, Songgwang-myeon, Suncheon-si, was transformed into a place of refuge, a shrine, a vacation home, a lecture hall for kings. Based on the change, the current study has explored the periodic changing placeness and the transformation of cultural landscape and has figured out the meaning. The result of this study is as follows. First, "Cho-yeon", named by Yeonjae Song, Byeong-Seon, originated from Tao Te Ching of Lao Tzu. The concept is found not only in the Cho-yeon Pavilion in Suncheon but also in various places, such as, the Cho-yeon-dae in Pocheon, of the Cho-yeon-dae in Gapyeong, of the Cho-yeon-dae of the embankment behind the Gioheon of Changdeok-gung Garden, Cho-Yeon-Mul-Oe old buildings, including Jung(亭), Dae(臺), Gak(閣), of Ockriukag in Yuseong, etc. This shows that taoistic Poongrhu was naturally grafted onto confucian places, which is one of the examples of the fusion of Confucianism, Buddhism, and Taoism. Second, the placeness of the Cho-yeon Pavilion area is related to a legend that King Gong-min sought refuge here at the end of the Koryo Dynasty. The legend is based on the Wangdae village(king's region), Yu-Gyeong(留京)(the place where kings stayed), rock inscription of Wang-Dae-Sa-Jeok, Oh-Jang-Dae (the place where admiral flags were planted), and the Mohusan Mountain. Third, the Cho-yeon Pavilion not only has a base(the vacation home) that reflects confucian values from the rock inscription(趙鎭忠別業, 趙秉翼, 宋秉璿) of the beautiful rock walls and torrents but also has territoriality as taoistic Abode of the Immortals (there are places where people believe taoist hermits with miraculous powers live within 1km of the pavillion: Wol-Cheong(月靑), Pung-Cheong(風靑), Su-Cheong(水靑), Dong-Cheon(洞天). The Cho-yeon Pavilion also reflects the heaven of Neo-Confucianism for, pursuing study, and improving aesthetic sense by expanding its outer area and establishing the nine Gok: Se-Rok-Gyo(洗鹿橋)., Bong-Il-Dae(捧日臺), Ja-Mi-Gu(紫薇鳩), Un-Mae-Dae(雲梅臺), Wa-Ryong-Chong(臥龍叢), Gwang-Seok-Dae(廣石臺), Eun-Seon-Gul(隱仙窟), Byeok-Ok-Dam(碧玉潭), and Wa-Seok-Po(臥石布). In sum, the Cho-yeon Pavilion is a complex cultural landscape. Fourth, the usage of the Cho-yeon Pavilion was expanded and transformed: (1)Buddhist monastery${\rightarrow}$(2)Confucian vacation home${\rightarrow}$(3)Vacation home+Taoistic Poongrhu Place${\rightarrow}$(4)Vacation Home+Taoistic Poongrhu Place+Lecture Hall(the heaven of Neo-Confucianism). To illustrate, in 7978, the place served as Buddist Monk Kwang-Sa's monastery; in 1863, Cho, Jin-Choong established a vacation home by building a shrine in front of the tomb of his ancestor; in 1864, Cho, Jae-Ho expanded its usage to a vacation home to serve ancestors as a taoistic place by repairing the pavilion with roof tiles; and after 1890, Cho, Jun-Sup received the name of the pavilion, Cho-yeon, from his teacher Song, Byeong-Seon, and used the Pavilion for a lecture hall.