• Title/Summary/Keyword: frictional wedge

Search Result 15, Processing Time 0.028 seconds

Finite Element Simulation of a Cross-Wedge Rolling Process Considering Detailed Geometry of Dies (금형의 상세 형상을 고려한 크로스웨지롤링 공정의 유한요소 시뮬레이션)

  • Lee, M.C.;Cho, J.H.;Park, J.H.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.252-255
    • /
    • 2008
  • We conduct finite element simulation of a cross-wedge rolling process using AFDEX 3D. The die is realistically modeled with emphasis on the hatched plicate over the slope or forming region. Coulomb frictional law is used to prevent slip between material and die. Constant shear frictional law is also investigated and it is esmphasized that the constant shear frictional law is improper for cross-wedge rolling simulation.

  • PDF

Stability of Railway Bridge Abutment with Earth Pressure and Internal Friction Angle of Backfill (내부마찰각과 토압 산정방법에 따른 철도교대의 안정성 비교 연구)

  • Choi, Chan Yong;Kim, Hun Ki;Yang, Sang Beom;Kim, Byung Il
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.6
    • /
    • pp.765-776
    • /
    • 2016
  • In this study, a standard section of a railway bridge abutment wall was designed to satisfy the external stability condition in accordance with the design criteria; this design was used to compare and analyze the active earth pressure and to calculate various types of earth pressure acting on the virtual back (wall, plane) according to the frictional angle of the backfill materials. Also, the external stability, member force and construction cost were analyzed according to the frictional angle of the backfill materials using various theories of earth pressure such as Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge. As for the results, it was found that lateral earth pressure at the virtual back plane was higher than at the virtual back wall, and that these values decreased with the increase of the frictional angle of the backfill materials. The increasing of the frictional angle of the backfill materials decreased the active earth pressure (according to Rankine, Coulomb, Trial Wedge, and Improved Trial Wedge results), and the member force as well as the construction cost were reduced.

Comparison and Evaluation of Two-part Wedge Analysis for Reinforced Slopes with Centrifuge Test (보강사면(補强斜面)에 대한 Centrifuge Test와 Two-part Wedge 해석(解析)의 비교평가(比較評價))

  • Seo, In-Shik;Lee, Chin;Kim, Byung-Tak
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.2
    • /
    • pp.35-39
    • /
    • 1999
  • Results of two-part wedge analysis and centrifuge test executed by Zornberg et al. were compared for geotextile-reinforced slope stability. For two-part wedge analysis results of two cases, a frictional case considering internal friction of soil as interwedge friction and a nonfrictional case not considering, were also compared and evaluated. The analysis was based on limit equilibrium and two-part wedge was divided into slices as many as the number of geotextiles to obtain a maximum tension distribution mobilized in reinforcements. A significant observation was that the distribution was a triangular shape with maximum tension of geotextile at a transit point of interwedge. The number of geotextiles and failure surface of frictional case were reasonable and more comparable to results of the centrifuge tests than those of nonfrictional case. Therefore it can be said that two-part wedge analysis is recommendable for design analysis of reinforced slopes if an interwedge angle is regarded to be an angle of internal friction in soil.

  • PDF

Evaluation of Ultimate Lateral Resistance for Single Pile Using Strain Wedge Model in Sand (모래지반에서 쐐기모델을 이용한 단말뚝의 극한수평저항력 산정)

  • Kim, Ji-Seong;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.15-22
    • /
    • 2016
  • The magnitude of the lateral resistance that resists the lateral movement of the pile is controlled by the amount of the pile movement and the strength and stiffness of soil. In this paper, we proposed an equation which produces the ultimate lateral resistance of the laterally loaded single pile in sand using the strain wedge model of the soil deformation. The ultimate lateral resistance in strain wedge model is composed of earth pressure of wedge rear, the shear resistance on the side of the wedge, and the frictional resistance between pile and ground. The ultimate lateral resistance determined by the proposed equation was compared with the Ashour, F.D.M., field test in sand. As a result, the error of the proposed equation and Ashour theory, field test, F.D.M were respectively 1.03%, 0.40~3.32%, 6.02%.

Field Pull-out Test and 3-D FEM Analysis for Steel Pipe Nailing Installed Foldable Wedge (접이식 웨지 장착 강관네일의 현장 인발시험 및 3차원 유한요소해석)

  • Kwon, Kyo-Keun;Choi, Bong-Hyuck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.313-319
    • /
    • 2009
  • In this study, field pull-out test and 3-D FEM analysis have been performed for examining and reflecting the behavior of steel pipe nailing installed foldable wedge. Field pull-out test was performed under various conditions. As a result, the steel pipe nailing installed foldable wedge has an effect of pull-out resistance increased about 30% in comparison with non-wedge type steel pipe nailing. Through back analysis in 3-D FEM for behavior of non-wedge type steel pipe nailing, friction characteristics between nail to soil was analyzed and obtained first consistent with field pull-out behavior. Then, the frictional characteristic was used for analyzing the behavior of the steel pipe nailing installed foldable wedge. The result was compared with the test results. Consequently, friction coefficient (${\mu}$) of about 1.2 between grout to soil leads to good agreement with analysis results and test results. And a limited pull-out resistance, $$T_L{\sim_=}32$$ tonf is similar to field pull-out test result which is improved about 33% in comparison with non-wedge type steel pipe nailing's $$T_L{\sim_=}24$$ tonf.

The Study of Pullout-Behavior Characteristics of The Ground Anchor Using Expanded Hole (확공을 이용한 지압형 앵커의 인발거동 특성 연구)

  • Min, Kyong-Nam;Jung, Chan-Mook;Jung, Dae-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1502-1508
    • /
    • 2011
  • Ground anchor expands the hollow wall of settled part and has the structure which resists the designed tensile load by the bearing pressure generated by the wedge of the anchor body pressing in the expanded part. Such ground anchor has been recognized for stability and economicality since 1960s in technologically advanced nations such as Japan and Europe, and in 1970s, the Japan Society of Soil Engineering has established and announced the anchor concept map. The ground anchor introduced in Korea, however, has the structural problem where the tensile strength is comes only from the ground frictional force due to expansion of the wedge body. In an interval where the ground strength is locally reduced due to fault, discontinuation or such, this is pointed out as a critical weakness where the anchor body of around 1.0m must resist the tensile load. Also, in the installation of concrete block, the concentrated stress of concrete block constructed on the uneven rock surface causes damage, and many such issues in the anchor head have been reported. Thus, in this study, by using the expanded bit for precise expansion of settled part, the ground anchor system was completed so that the bearing pressure of ground anchor can be expressed as much as possible, and the bearing plate was inserted into the ground to resolve the existing issues of concrete block. Through numerical analysis and pullout test executed for verification of site applicability, the pullout-behavior characteristics of anchor was analyzed.

  • PDF

A Behavior Test on a Frictional-Wedge-Type Vibration Isolation Device for Vibration Reduction of a Railway Track (열차 진동 저감을 위한 마찰쐐기형 방진장치의 거동 시험)

  • Lee, Chanyoung;Choi, Sanghyun;Lee, Yooin;Kwon, Segon;Koh, Yongsung;Ji, Yongsoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In the case of railway facilities in cities such as a railway station or a bridge, the significance of design for reducing vibration and noise is getting more significant. The vibration control solution is in need especially for an elevated railway station to block vibration of a train and secondary noise effectively. Even though a vertical vibration isolation device is able to be applied effectively to railway facilities such as elevated railway stations which transfer vibration directly from a train to a structure, the development of the vertical device is much slower than a horizontal vibration isolation device. In this paper, a vibration isolation device using wedge type friction material which is currently developing to reduce train-induced vibration effectively is introduced and test results for verification of dynamic performance is also presented. The vibration test on a concrete structure equipped with the developed vibration isolation device is conducted through which the isolation performance and dynamic properties are verified and needs for improving the performance of the device is identified.

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Effect of Thermal Conductivity of Bearing on the Lubrication Performance of Parallel Slider Bearing (베어링의 열전도율이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Lee, WonSeok;Park, JiBin
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.247-253
    • /
    • 2018
  • Temperature rise due to viscous shear of the lubricating oil generates hydrodynamic pressure, even if the lubricating surfaces are parallel. This effect, known as the thermal wedge effect, varies significantly with film-temperature boundary conditions. The bearing conducts a part of the heat generated; hence, the oil temperature varies with the thermal conductivity of the bearing. In this study, we analyze the effect of thermal conductivity on the thermohydrodynamic (THD) lubrication of parallel slider bearings. We numerically analyze the continuity equation, Navier-Stokes equation, energy equation including the temperature-viscosity and temperature-density relations for lubricants, and the heat conduction equation for bearing by creating a 2D model of the micro-bearing using the commercial computational fluid dynamics (CFD) code FLUENT. We then compare the variation in temperature, viscosity, and pressure distributions with the thermal conductivity. The results demonstrate that the thermal conductivity has a significant influence on THD lubrication characteristics of parallel slider bearings. The lower the thermal conductivity, the greater the pressure generation due to the thermal wedge effect resulting in a higher load-carrying capacity and smaller frictional force. The present results can function as the basic data for optimum bearing design; however, the applicability requires further studies on various operating conditions.

Stability Analysis of Concrete Plugs Installed in Pilot Tunnels for the Storage of Compressed Air (압축공기 저장용 파일롯 터널에 설치된 콘크리트 플러그의 안정성 해석)

  • Lee, Youn-Kyou;Song, Won-Kyoung;Park, Chul-Whan;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.446-454
    • /
    • 2010
  • CAES-G/T (Compressed Air Energy Storage - Gas Turbine) power generation is a likely option for the buffer facility stabilizing the fluctuation of the renewable powers, such as wind and solar powers. Considering the geological conditions, the underground CAES facility is most probable if the CAES-G/T generation is planed in Korea. In this kind of facility, a concrete plug is installed to seal the compressed air in the container, so that the selection of the shape and dimension of concrete plug could be a critical design factor. The stability evaluation of two types of plug was carried out by investigating the distribution of the factor of safety in the plugs and the distribution of contact pressure over the contact surface. The analysis result shows that the taper-shaped plug is more structurally stable than the wedge-shaped plug for the given geological condition. Possible separation of the rock-concrete interface around the spring line of the wedge-shaped plug is anticipated, which means the possible leakage of compressed air through the side wall and also means the poor mobilization of frictional resistance on that area.