• Title/Summary/Keyword: friction Factor

Search Result 967, Processing Time 0.026 seconds

An upper bound analysis for closed-die forging of spur gear forms (스퍼어 기어의 밀폐단조에 관한 상계해석)

  • Park, J.C.;Hur, K.D.;Park, J.U.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.4
    • /
    • pp.26-37
    • /
    • 1994
  • A kinematically admissible velocity field for the numerical analysis of closed-die forging process of spur gear is proposed. The velocity field is divided into three regions of deformation. In the analysis, the involute curve is approximated to be straight line and the upper-bound method is used to calculate energy dissipation rate. A constant frictional frictional factor has been assumed on the contacting surfaces. The effects of root diameter, number of teeth, and friction factor are determined on the relative forging pressure. The frictionless relative pressure is independent of root diameter for the same number of teeth, but increases with the number of teeth on a given root diameter. In the presence of friction, the relative forging presure increasing root diameter at the start of forging, but decreases with increasing root diameter in the processing of forging.

  • PDF

An Experimental Study on Air-side Performance of Fin-and-Tube Heat Exchangers with Slit Fin

  • Chang, Keun-Sun;Phan, Thanh-Long
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.627-632
    • /
    • 2006
  • An experimental study is conducted to investigate the effect of the tube row and fin spacing on the air-side heat transfer and friction characteristics of fin-tube heat exchangers with slit fin pattern. A total of twelve samples of fin-tube heat exchangers with the nominal tube diameter of 7 mm, transverse tube pitch of 19 mm and longitudinal tube pitch of 12.5 mm are tested. The thermal fluid measurements are made using a psychometric calorimeter. The raw data are reduced to the desired heat transfer coefficient in terms of j-factor and friction factor of f for various frontal air velocities, fin pitches and number of tube rows.

  • PDF

Performance Comparison of 7mm Fin-Tube Heat Exchangers for Various Design Conditions (설계 조건에 따른 7mm 직경 핀-관 열교환기의 성능비교)

  • Chang, Keun-Sun;Kim, Hyuk;Hong, Seok-Ryul;Kim, Young-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.633-638
    • /
    • 2006
  • This study presents the air side heat transfer and friction characteristics of fin-tube heat exchangers with various fin types. A total of 8 samples of heat exchangers are tested. Fin patterns tested are slit, louver and plate fins. Each fin type has three cases of number of tube rows(N=1, 2, 3) and two different fin pitches. The results are plotted in terms of Colburn j-factor and friction factor f with respect to Reynolds number in the range of 200 to 510.

  • PDF

The effect of micro parameters of PFC software on the model calibration

  • Ajamzadeh, M.R.;Sarfarazi, Vahab;Haeri, Hadi;Dehghani, H.
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.643-662
    • /
    • 2018
  • One of the methods for investigation of mechanical behavior of materials is numerical simulation. For simulation, its need to model behavior is close to real condition. PFC is one of the rock mechanics software that needs calibration for models simulation. The calibration was performed based on simulation of unconfined compression test and Brazilian test. Indeed the micro parameter of models change so that the UCS and Brazilian test results in numerical simulation be close to experimental one. In this paper, the effect of four micro parameters has been investigated on the uniaxial compression test and Brazilian test. These micro parameters are friction angle, Accumulation factor, expansion coefficient and disc distance. The results show that these micro parameters affect the failure pattern in UCS and Brazilian test. Also compressive strength and tensile strength are controlled by failure pattern.

Experimental Study of Friction Factors for Laminar, Transition, and Turbulent Flow Regimes in Helical Coil Tubes (헬리컬 코일 튜브에서의 층류, 천이, 난류 영역의 마찰계수에 대한 실험적 연구)

  • Park, Won Ki;Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The friction factors according to the flow regimes in helical coil tubes depend on the coil diameter, the tube diameter, and the coil pitch. In previous studies, correlations for the laminar flow regime in helical coil tubes have been proposed. However, studies on the transition flow regime and the turbulent flow regime are insufficient and further researches are necessary. In this study, characteristics of the friction factors for the laminar, transition and turbulent flow regimes in helical coil tubes were experimentally investigated. The helical coil tubes used in the experiments were made of copper. The curvature ratios of the helical coil tubes, which means the ratio of helical coil diameter to inner diameter of the helical coil tube are 24.5 and 90.9. Experiments were carried out in the range of $529{\leq}Re{\leq}39,406$ to observe the flows from the laminar to the turbulent regime. The friction factors were obtained by measuring the differential pressures according to the flow rates in the helical coil tubes while varying the curvature ratios of the helical coil tubes. Experimental data show that the friction factors for the helical coil tube with 24.5 in the curvature ratio of the helical coil tube were larger than those in the straight tube in all flow regimes. As the curvature ratio of the helical coil tube increases, the friction factor in turbulent flow regime tends to be equal to that of the straight tube. In addition, it was confirmed that the transition flow regimes in the helical coil tubes were much wider than those in the straight tube, also the critical Reynolds numbers were larger than those in the straight tube. The results obtained in this experimental study can be used as basic data for studies on the water hammer phenomenon in helical coil tubes.

Study on Friction Energy of Rubber Block Under Vertical Load and Horizontal Velocity (고무블록의 수직 하중 및 수평 속도에 따른 마찰에너지 연구)

  • Kim, Jin Kyu;Yoo, Sai Rom;Lee, Il Yong;Kim, Doo Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.905-912
    • /
    • 2013
  • Rubber is one of the most commonly used materials in various fields because of its unique viscoelastic properties. Friction occurs when a tire constantly makes contact with the ground. As a result, friction causes wear. The frictional energy caused by friction is a primary factor in the wear mechanism. The frictional energy is affected by various conditions (temperature, roughness of ground, shape of rubber, load, and materials). In this study, the analysis was preceded by considering the vertical load and the horizontal velocity to the rubber using ABAQUS/explicit. The contact pressure, and friction energy are derived using the shear force and slip distance. The actual behavior of the rubber test data were compared with the analysis results.

Development of Discretized Combined Unsteady Friction Model for Pipeline Systems (관수로 합성 부정류 차분화 마찰모형의 개발)

  • Choi, Rak-Won;Kim, Sang-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.455-464
    • /
    • 2012
  • In this study, a combined unsteady friction model has been developed to simulate the waterhammer phenomenon for the pipeline system. The method of characteristics has been employed as the modeling platform for the integration of the acceleration based model and the frequency dependant model for unsteady friction. Both Zielke's model and Ramos model were also compared with pressure measurements of a pilot plant pipeline system. In order to validate the modeling approach, a pipeline system equipped with the high frequency pressure data acquisition system was fabricated. The time series of pressure, introduced by a sudden valve closure, were obtained for two Reynolds numbers. A trial and error method was used to calibrate parameters for unsteady friction model. The comparison between different unsteady friction contributions in pressure variation provided the comprehensive understanding in the pressure damping mechanism of waterhammer. The proper evaluation of unsteady friction impact is a critical factor for accurate simulation of hydraulic transient.

An Experimental Study on Tube-Side Heat Transfer Coefficients and Friction Factors of the Enhanced Tubes Used in Regenerators of Absorption Chillers (흡수식 냉동기의 재생기에 사용되는 전열촉진관의 관 내측 열전달계수 및 마찰계수에 대한 실험적 연구)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.716-723
    • /
    • 2016
  • Enhanced tubes are used widely in the heat exchangers of absorption chillers. In regenerators, corrugated, ribbed or floral tubes are commonly used. In this study, the tube-side heat transfer coefficients and friction factors of enhanced tubes were obtained experimentally using the Wilson Plot method. The results showed that the heat transfer coefficients and the friction factors were the largest for the corrugated tube, followed by the ribbed tube. The heat transfer coefficients and friction factors of the floral tube matched those of the smooth tube within 4%, which suggests that the heat transfer and friction characteristics of the floral tube may be accounted for properly by the hydraulic diameter. The B(e+) and g(e+) were obtained from the experimental data of the corrugated and ribbed tube. The B(e+) and g(e+) of the corrugated tube matched those of the existing correlation within 20%. The present results may be used for an assessment of the heat transfer and friction characteristics of the enhanced tubes for regenerators.

Performance Evaluation of Nano-Lubricants at Journal Bearing of Scroll Compressors (나노 윤활유를 이용한 스크롤 압축기 저널 베어링의 윤활특성 평가)

  • Kim, Kyong-Min;Hwang, Yu-Jin;Lee, Kwang-Ho;Sung, Chi-Un;Lee, Jae-Keun;Jung, Won-Hyun;Kim, Sung-Choon;Jin, Hong-Kyun
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.189-193
    • /
    • 2008
  • Performance of refrigerant oil at the thrust-bearing and at the journal-bearing of a scroll compressor is a significant factor. This paper presents the friction and anti-wear characteristics of nano oil with a mixture of a refrigerant oil and carbon nano particles in the journal bearing of scroll compressors. The characteristics of friction and anti-wear using nano-oil is evaluated using the disk on disk tester and the journal bearing tester for measuring friction surface temperature and the coefficient of friction at the journal bearing tester. In journal bearing test, the average friction coefficient of high concentration nano-oil was decreased down to 18% compared to raw oil under 4,500 N and 3,600 rpm. It is believed that nano particles can be coated on the wear surfaces and the interaction of nano particles between surfaces can be improved the lubrication in the friction surfaces. Worn surfaces of frictional specimen were measured with straightness. carbon nano oil enhances the characteristics of the anti-wear and friction at the joural bearing of scroll compressors.

  • PDF