• Title/Summary/Keyword: freundlich model

Search Result 306, Processing Time 0.026 seconds

Removal Characteristics of Cd and Pb by Adsorption on Red Mud (Red mud를 이용한 중금속 Cd 및 Pb의 흡착제거 특성)

  • Yim, Soobin;Kim, Jaegon;Song, Hocheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.39-47
    • /
    • 2011
  • The objective of this study is to investigate the removal characteristics of cadmium(Cd) and lead(Pb) by adsorption on red mud and to study the adsorption characteristics of Cd and Pb using red mud activated by acid treatment and calcination. The adsorption of Cd and Pb on red mud was significantly achieved within 1hour and equilibrated after 5 hours. The adsorption capacity of Cd and Pb on red mud increased with increasing pH. The neutralization of red mud by distilled water or acid and the activation of red mud by acid treatment or calcination decreased the adsorption capacity of Cd and Pb on red mud, suggesting that Cd and Pb could be effectively eliminated by adsorption on red mud without any pretreatment or modification. Both Langmuir and Freundlich models were successfully applied to describe the adsorption behavior of Cd and Pb on red mud. The $q_m$ of Langmuir adsorption model and $K_F$ of Freundlich adsorption model were 5.230mg/g and 1.118mg/g for Cd and 22.222mg/g and 7.241mg/g for Pb, respectively.

Evaluation of Adsorption Characteristics of the Media for Biofilter Design (바이오필터설계를 위한 바이오필터 담체의 흡착 특성)

  • Lee, Eun-Ju;Lim, Kwang-Hee
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.994-1001
    • /
    • 2008
  • Freundlich isothermal adsorption parameters, applicable to such biofilter-model as process-lumping model(Lim's model), for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost were obtained and were compared each other, assuming that adsorbents are enclosed by water layer, in order to construct robust process-lumping biofilter model effective for wide-range of hydrophilic volatile organic compounds(VOC). In this investigation 0.04, 0.08, 0.12, 0.16, 0.2, 0.4, 0.8 and 1.0ml of ethanol were added to three kinds of adsorbent-media and were placed at $30^{\circ}{\cdots}$ under the wet condition of the media, which was the same as biofilter operating condition, until the adsorption reached the condition of equilibrium before each adsorbed amount of ethanol was obtained. Then adsorption capacity parameters(K) and adsorption exponents of Freundlich adsorption isotherm equation, which simulates the adsorbed amount of ethanol equilibrated with the ethanol concentration of the condensed water in the pore of the media, were constructed for sterilized granular activated carbon(GAC), sterilized compost and sterilized equal volume mixture of GAC and compost as (0.7566 and $5.070{\times}10^{-7}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.7566}$), (0.8827 and $1.000{\times}10^{-8}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.8827}$) and (0.5688 and $5.243{\times}10^{-6}mg-ethanol/mgmedia/(mg-ethanol/m^3)^{0.5688}$), respectively. These Freundlich isothermal adsorption parameters were applicable to the adsorption characteristics of biofilter media enclosed with bio-layer. The order of magnitude of the ratio of ethanol-air/water partition coefficient and toluene-air/water partition coefficient was almost consistent to that of ethanol-adsorbed amounts in this experiment with compost and in the investigation of Delhomenie et al. on toluene-adsorption to wet compost.

Photocatalysis and Adsorption of Reactive Black 5(RB5) by HAP/TiO2 Media (HAP/TiO2 여재를 이용한 Reactive Black 5(RB5)의 광촉매 반응과 흡착)

  • Chun, Sukyoung;Chang, Soonwoong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.31-37
    • /
    • 2011
  • This study investigated on the adsorption and photocatalysis of Reactive Black 5(RB5) by the hydroxyapatite(HAP)/Titanium dioxide($TiO_{2}$) media. The adsorption of RB5 on $TiO_{2}$, HAP and $TiO_{2}$/HAP was investigated during a series of batch adsorption experiments. The amounts adsorbed at equilibrium were measured. Langmuir and Freundlich isotherm models were tested for their applicability. The result of equilibrium studies of $TiO_{2}$, HAP and $TiO_{2}$/HAP adsorbent were found to follow Langmuir isotherm model. The adsorbed amounts(Qmax) were found to be 5.28mg/g on single $TiO_{2}$, 12.45mg/g on single HAP and 9.03mg/g on $TiO_{2}$/HAP, respectively. The experimental data were analysed using the pseudo-first-order adsorption and photocatalysis kinetic models. According to these models, RB5 degradation by $TiO_{2}$/HAP was affected by interaction effect of photocatalysis and adsorption.

Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials (반응매질로서의 영가철 및 블랙셰일에 용존무기 인산염 흡착)

  • Min, Jee-Eun;Park, In-Sun;Ko, Seok-Oh;Shin, Won-Sik;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.907-912
    • /
    • 2008
  • In order to reduce the availability of dissolved inorganic phosphorus in surface water, lakes, and estuaries, black shale and zero valent iron can be used as reacitve materials. Sorption of phosphate to sampled sediment, black shale, and zero valent iron was quantitatively evaluated in this research. Effect of coexistence of calcium was also tested, since coexisting ions can enhance the precipitation of phosphate. An empirical kinetic model with fast sorption(k$_t$), slow sorption(k$_s$), and precipitation(k$_p$) was well fitted to experiment data from this research. Langmuir and Freundlich sorption isotherms were also used to evaluated phosphate maximum sorption capacity. Calcium ions at 0, 1 and 5 mM affected the precipitation kinetic coefficient in empirical kinetic model but did not have impact on the maximum sorbed concentration.

Characteristics of Equilibrium, Kinetics, and Thermodynamics for Adsorption of Acid Black 1 Dye by Coal-based Activated Carbon (석탄계 활성탄에 의한 Acid Black 1 염료의 흡착에 있어서 평형, 동력학, 및 열역학적 특성)

  • Lee, Jong-Jib
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.261-268
    • /
    • 2021
  • Equilibrium, kinetics, and thermodynamics of adsorption of acid black 1 (AB1) by coal-based granular activated carbon (CGAC) were investigated with the adsorption variables of initial concentration of dye, contact time, temperature, and pH. The adsorption reaction of AB1 by activated carbon was caused by electrostatic attraction between the surface (H+) of activated carbon and the sulfite ions (SO3-) and nitrite ions (NO2-) possessed by AB1, and the degree of reaction was highest at pH 3 (97.7%). The isothermal data of AB1 were best fitted with Freundlich isotherm model. From the calculated separation factor (1/n) of Freundlich, it was confirmed that adsorption of AB1 by activated carbon could be very effective. The heat of adsorption in the Temkin model suggested a physical adsorption process (< 20 J mol-1). The kinetic experiment favored the pseudo second order model, and the equilibrium adsorption amount estimated from the model agreed to that given by the experiments (error < 9.73% ). Intraparticle diffusion was a rate controlling step in this adsorption process. From the activation energy and enthalpy change, it was confirmed that the adsorption reaction is an endothermic reaction proceeding with physical adsorption. The entropy change was positive because of an active reaction at the solid-liquid interface during adsorption of AB1 on the activated carbon surface. The free energy change indicated that the spontaneity of the adsorption reaction increased as the temperature increased.

Enhancement of phosphate removal using copper impregnated activated carbon(GAC-Cu) (Cu(II)를 이용하여 표면개질된 활성탄의 인산염 제거효율 향상)

  • Shin, Jeongwoo;Kang, Seoyeon;An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.6
    • /
    • pp.455-463
    • /
    • 2021
  • The adsorption process using GAC is one of the most secured methods to remove of phosphate from solution. This study was conducted by impregnating Cu(II) to GAC(GAC-Cu) to enhance phosphate adsorption for GAC. In the preparation of GAC-Cu, increasing the concentration of Cu(II) increased the phosphate uptake, confirming the effect of Cu(II) on phosphate uptake. A pH experiment was conducted at pH 4-8 to investigate the effect of the solution pH. Decrease of phosphate removal efficiency was found with increase of pH for both adsorbents, but the reduction rate of GAC-Cu slowed, indicating electrostatic interaction and coordinating bonding were simultaneously involved in phosphate removal. The adsorption was analyzed by Langmuir and Freundlich isotherm to determine the maximum phosphate uptake(qm) and adsorption mechanism. According to correlation of determination(R2), Freundlich isotherm model showed a better fit than Langmuir isotherm model. Based on the negative values of qm, Langmuir adsorption constant(b), and the value of 1/n, phosphate adsorption was shown to be unfavorable and favorable for GAC and GAC-Cu, respectively. The attempt of the linearization of each isotherm obtained very poor R2. Batch kinetic tests verified that ~30% and ~90 phosphate adsorptions were completed within 1h and 24 h, respectively. Pseudo second order(PSO) model showed more suitable than pseudo first order(PFO) because of higher R2. Regardless of type of kinetic model, GAC-Cu obtained higher constant of reaction(K) than GAC.

Prediction of Gas Phase Sorption Isotherms on The Basis of QSAR Method (QSAR 방법을 이용한 가스 상태의 등온흡착선 예측)

  • Kim, Jong O
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.11-18
    • /
    • 1991
  • Volatile organic compounds(VOC) present in or generated by many sources, can be toxic, mutagenic or even carcinogenic, so that control of such emissions is significant. The 6 chlorinated organic chemicals as VOC were examined in this study. Prediction of the behavior of VOC on activated carbon beds is an important part of control system design. The objective of this study was to predict gas phase sorption isotherms from physical properties and liquid phase isotherms obtained with the same adsorbent and adsorbate. One of the techniques that was investigated was quantitative structure-activity relationships(QSAR) for the predicition procedures. It was possible to estimate sorption isotherms in the gas phase($a_g$) using either connectivity index, $^2{\chi}$, and the Henry's law coefficient ($H_a$) or the solubility and the equilibrium concentration in the gas phase. As a result of study, the predictive equation based on Freundlich model for $a_g$ was ${\log}\;a_g=0.238\;^2{\chi}+0.573\;{\log}\;H_a+4.330(r^2=0.94)$. Finally, this would provide a potentially useful tool to describe and predict sorption capacity without time-consuming tests.

  • PDF

Equilibrium Kinetics and Thermodynamic Parameters Studies for Eosin Yellow Adsorption by Activated Carbon (활성탄에 의한 Eosin Yellow의 흡착에 대한 평형, 동력학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3319-3326
    • /
    • 2014
  • Eosin yellow is used a dye and colorant but it is harmful toxic substance. In this paper, batch adsorption studies were carried out for equilibrium, kinetics and thermodynamic parameters for eosin yellow adsorption by activated carbon with varying the operating variables like pH, initial concentration, contact time. Equilibrium adsorption data were fitted into Langmuir, Freundlich, Temkin and Dubinin-Radushkevich isotherms. By estimated Langmuir constant value, $R_L$=0.067-0.083, and Freundlich constant value, $\frac{1}{n}=0.237-0.267$, this process could be employed as effective treatment for removal of eosin yellow. From calculated Temkin constant, value, B=1.868-2.855 J/mol, and Dubinin-Radushkevich constant, value, E=5.345-5.735 kJ/mol, this adsorption process is physical adsorption. From kinetic experiments, the adsorption process were found to confirm to the pseudo second order model with good correlation coefficient($r^2$=0.995-0.998). The mechanism of the adsorption process was determined two step like as boundary and intraparticle diffusion.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

Adsorption Properties of Oxidized NO by Plasma Using Hybrid Anion-Exchange Fibers (복합음이온 교환섬유의 플라스마 산화 처리한 NO의 흡착특성)

  • Cho In-Hee;Kang Kyung-Seok;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.4
    • /
    • pp.291-297
    • /
    • 2006
  • In this study, adsorption properties of oxidized NO by plasma using aminated polyolefin-g-GMA hybrid anion exchange fibers were investigated. The maximum conversion of $NO_2$ by plasma was 49% at the conditions of 200 ppm NO, 10% $O_2$ and 30 L/min of flow rate. The adsorption content for N02 of hybrid anion exchange fibers increased with increasing the swelling ratio and the highest value was 1.5 g $H_2O/g$ IEF. The adsorption of $NO_2$ by hybrid anion exchange fibers were very fast until 10 min and reached its maximum value of 80% at 120 min. Ion exchange capacity of hybrid anion exchange fibers increased with increasing the swelling ratio and it showed the highest 0.6 mmol/g IEF values at L/D=5. The adsorption isotherm model for hybrid anion exchange fibers were closer to Freundlich than Langmuir adsorption isotherm model. It was shown that adsorption of the multi-molecular layer was dominant.