Browse > Article

Adsorption Properties of Oxidized NO by Plasma Using Hybrid Anion-Exchange Fibers  

Cho In-Hee (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Kang Kyung-Seok (Siontech Co. Ltd.)
Hwang Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
Publication Information
Polymer(Korea) / v.30, no.4, 2006 , pp. 291-297 More about this Journal
Abstract
In this study, adsorption properties of oxidized NO by plasma using aminated polyolefin-g-GMA hybrid anion exchange fibers were investigated. The maximum conversion of $NO_2$ by plasma was 49% at the conditions of 200 ppm NO, 10% $O_2$ and 30 L/min of flow rate. The adsorption content for N02 of hybrid anion exchange fibers increased with increasing the swelling ratio and the highest value was 1.5 g $H_2O/g$ IEF. The adsorption of $NO_2$ by hybrid anion exchange fibers were very fast until 10 min and reached its maximum value of 80% at 120 min. Ion exchange capacity of hybrid anion exchange fibers increased with increasing the swelling ratio and it showed the highest 0.6 mmol/g IEF values at L/D=5. The adsorption isotherm model for hybrid anion exchange fibers were closer to Freundlich than Langmuir adsorption isotherm model. It was shown that adsorption of the multi-molecular layer was dominant.
Keywords
hybrid anion exchange fibers; plasma oxidation; NOx; adsorption isotherm model; multi-molecular layer;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 S. H. Lee, K. C. Chung, J. W. Kim, M. C. Shin, and H. S. Lee, Analytical Science and Technology, 15, 256 (2002)
2 Y. L. M. Creyghton, E. M. van Veldhuizen, and W. R. Rutgers, Electrical and optical study of pulsed positive corona, Springer-Verlag Pub. Co., Berlin Heidelberg, 205 (1993)
3 S. Pekarek, J. Rosenkranz, and H. Lonekova, Generation of electron beam for technological processes, Springer-Verlag Pub. Co., Berlin Heidelberg, 345 (1993)
4 W. C. Fernelius, L. P. Hammett, and H. H. Williams, Ion exhcnage, McGraw-Hill, New York, 1962
5 J. Y. Park, Y. S. Koh, J. D. Lee, S. D. Son, S. H. Park, and H. S. Koh, KIEEME, 51, 406 (1999)
6 S. J. Scott, A long life, high repetition rate electron beam source, Springer-Verlag Pub. Co., Berlin Heidelberg, 339 (1993)
7 T. S. Hwang, Y. S. Kim, J. W. Park, and H. K. Lee, J. Ind. Eng. Chem., 10, 139 (2004)
8 A. Chakrabarti, A. Mizuno, K. Shimizu, T. Matsuoka, and S. Furuta, IEEE Trans. Ind. Appl., 31, 500 (1994)   DOI   ScienceOn
9 H. Bosch and F. Janssen, Catalysis Today, 2, 2369 (1988)
10 M. Rea and K. Yan, Energization ofpulse corona induced chemical processes, Springer-Verlag Pub. Co., Berlin Heidelberg, 191 (1993)
11 Y. S. Kim, T. S. Hwang, H. K. Lee, J. W. Park, and S. M. Kim, J. Ind. Eng. Chem., 10, 504 (2004)   DOI
12 S. I. Lee, K. C. Cho, and C. K. Shin, J. Korea Society of Environmental Administration, 5, 429 (1999)
13 T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer, 25, 451 (2001)
14 I. H. Cho, N. S. Kwak, P. H. Kang, Y. C. Nho, and T. S. Hwang, Polymer, 30, 3 (2006)   DOI   ScienceOn