Adsorption Properties of Oxidized NO by Plasma Using Hybrid Anion-Exchange Fibers

복합음이온 교환섬유의 플라스마 산화 처리한 NO의 흡착특성

  • Cho In-Hee (Department of Chemical Engineering, College of Engineering, Chungnam National University) ;
  • Kang Kyung-Seok (Siontech Co. Ltd.) ;
  • Hwang Taek-Sung (Department of Chemical Engineering, College of Engineering, Chungnam National University)
  • Published : 2006.07.01

Abstract

In this study, adsorption properties of oxidized NO by plasma using aminated polyolefin-g-GMA hybrid anion exchange fibers were investigated. The maximum conversion of $NO_2$ by plasma was 49% at the conditions of 200 ppm NO, 10% $O_2$ and 30 L/min of flow rate. The adsorption content for N02 of hybrid anion exchange fibers increased with increasing the swelling ratio and the highest value was 1.5 g $H_2O/g$ IEF. The adsorption of $NO_2$ by hybrid anion exchange fibers were very fast until 10 min and reached its maximum value of 80% at 120 min. Ion exchange capacity of hybrid anion exchange fibers increased with increasing the swelling ratio and it showed the highest 0.6 mmol/g IEF values at L/D=5. The adsorption isotherm model for hybrid anion exchange fibers were closer to Freundlich than Langmuir adsorption isotherm model. It was shown that adsorption of the multi-molecular layer was dominant.

본 연구에서는 아민화 polyolefin-g-GMA 복합음이온 교환섬유를 이용하여 플라스마 산화된 NO의 흡착특성을 고찰하였다. 플라스마 산화에 의한 $NO_2$ 전환율은 NO 200 ppm, 산소 10%, 유속 30 L/min 일 때 최대 49% 이었다. 또한 복합음이온 교환섬유의 $NO_2$ 흡착량은 함수율이 높을수록 증가하였고 함수율이 최대 1.5 g $H_2O/g$ IEF 이었으며, 복합음이온 교환섬유의 $NO_2$ 흡착은 10 분까지 빠르게 진행되었고 120 분에서 최대 80% 흡착되었다. 이온교환 용량은 함수율이 증가함에 따라 증가하였으며, 흡착컬럼 충전 비가 L/D=5에서 0.6 mmol/g IEF로 가장 높았다. 또한 이온교환 섬유의 흡착은 Langmuir 등온흡착 모델보다 Freundlich 등온흡착 모델에 가까웠으며, 다분자층에서의 흡착이 우세하게 발생한 것을 확인할 수 있었다.

Keywords

References

  1. T. S. Hwang, Y. S. Kim, J. W. Park, and H. K. Lee, J. Ind. Eng. Chem., 10, 139 (2004)
  2. S. H. Lee, K. C. Chung, J. W. Kim, M. C. Shin, and H. S. Lee, Analytical Science and Technology, 15, 256 (2002)
  3. H. Bosch and F. Janssen, Catalysis Today, 2, 2369 (1988)
  4. M. Rea and K. Yan, Energization ofpulse corona induced chemical processes, Springer-Verlag Pub. Co., Berlin Heidelberg, 191 (1993)
  5. A. Chakrabarti, A. Mizuno, K. Shimizu, T. Matsuoka, and S. Furuta, IEEE Trans. Ind. Appl., 31, 500 (1994) https://doi.org/10.1109/28.382109
  6. Y. L. M. Creyghton, E. M. van Veldhuizen, and W. R. Rutgers, Electrical and optical study of pulsed positive corona, Springer-Verlag Pub. Co., Berlin Heidelberg, 205 (1993)
  7. S. J. Scott, A long life, high repetition rate electron beam source, Springer-Verlag Pub. Co., Berlin Heidelberg, 339 (1993)
  8. S. Pekarek, J. Rosenkranz, and H. Lonekova, Generation of electron beam for technological processes, Springer-Verlag Pub. Co., Berlin Heidelberg, 345 (1993)
  9. W. C. Fernelius, L. P. Hammett, and H. H. Williams, Ion exhcnage, McGraw-Hill, New York, 1962
  10. S. I. Lee, K. C. Cho, and C. K. Shin, J. Korea Society of Environmental Administration, 5, 429 (1999)
  11. I. H. Cho, N. S. Kwak, P. H. Kang, Y. C. Nho, and T. S. Hwang, Polymer, 30, 3 (2006) https://doi.org/10.1016/0032-3861(89)90374-1
  12. J. Y. Park, Y. S. Koh, J. D. Lee, S. D. Son, S. H. Park, and H. S. Koh, KIEEME, 51, 406 (1999)
  13. Y. S. Kim, T. S. Hwang, H. K. Lee, J. W. Park, and S. M. Kim, J. Ind. Eng. Chem., 10, 504 (2004) https://doi.org/10.1021/ie50102a039
  14. T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer, 25, 451 (2001)