• Title/Summary/Keyword: freundlich isotherm

Search Result 420, Processing Time 0.029 seconds

Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions (단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Seong-Heon;Lee, Seong-Tae;Kang, Byung-Hwa;Kang, Se-Won;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • BACKGROUND: Heavy metal adsorption not only depends on rapid cooling slag(RCS) characteristics but also on the nature of the metals involved and on their competitive behavior for RCS adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu, Cd and Zn in single- and multi-metal forms by RCS.METHODS AND RESULTS: Both single- and multi-metal adsorption experiments were conducted to determine the adsorption characteristics of RCS for the heavy metals. Adsorption behaviors of the heavy metals by RCS were evaluated using both the Freundlich and Langmuir adsorption isotherm equations. The maximum adsorption capacities of metals by RCS were in the order of Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g) in the single-metal adsorption isotherm and Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g) in the multi-metal adsorption isotherm. Based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation, multi-metal adsorption behaviors differed from single- metal adsorption due to competition. Cadmium and Zn were easily exchanged and substituted by Cu during multi-metal adsorption.CONCLUSION: Results from adsorption experiments indicate that competitive adsorption among metals increases the mobility of these metals.

Separation and Adsorption-Desorption Characteristics of Heavy Rare Earth Elements (Gd, Tb, Dy) using P507 Resin (P507 추출수지를 이용한 중희토류 원소(Gd, Tb, Dy)의 흡탈착 분리특성에 관한 연구)

  • Lee, Sungeun;Kim, Joung Woon;Jeon, Jong Hyuk;Jun, Hong Myeong;Lee, Jin Young;Han, Choon
    • Resources Recycling
    • /
    • v.25 no.4
    • /
    • pp.60-67
    • /
    • 2016
  • This study was conducted to establish the adsorption-desorption mechanism and the optimum condition of chromatographic operation for separations of heavy rare earth elements (Gd, Tb, Dy) using a p507-containing resin. By employing Langmuir and Freundlich isotherm together with pseudo first and second order kinetics, absorption-desorption reaction mechanism was investigated. Langmuir and Freundlich isotherm was applied under assumption that adsorption reaction occurs in form of monolayer, and because the result was identical to the assumption, now we know adsorption of heavy rare earth elements occurs in form of monolayer. Concerning the pseudo first and second order kinetic, the pseudo second order seemed to be more suitable to represent heavy rare earth element adsorption mechanism. By using the extraction chromatography to separate heavy rare earth elements, ${\alpha}^{Tb}_{Gd}=1.24$, and ${\alpha}^{Dy}_{Tb}=1.03$ were confirmed in eluent HCl 0.25 M which indicates almost perfect separations of three elements. Furthermore, as concentrations of eluent became higher, the resolution value decreased and the elution area got shortened.

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida (해조류(Laminaria species, Ecklonia stolonifera, Gelidium amansii, Undaria pinnatifida)에 의한 중금속 생물흡착 특성)

  • Choi, Ik-Won;Kim, Sung-Un;Seo, Dong-Cheol;Kang, Byung-Hwa;Sohn, Bo-Kyoon;Rim, Yo-Sup;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.4
    • /
    • pp.370-378
    • /
    • 2005
  • The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.

Application of Adsorption Characteristic of Ferrous Iron Waste to Phosphate Removal from Municipal Wastewater (폐산화철의 흡착특성을 이용한 도시하수내 인 처리)

  • Kim, Jin-Hyung;Lim, Chae-Sung;Kim, Keum-Yong;Kim, Dae-Keun;Lee, Sang-Ill;Kim, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.3
    • /
    • pp.231-238
    • /
    • 2008
  • This study proposed the method of phosphate recovery from municipal wastewater by using ferrous iron waste, generated from the mechanical process in the steel industry. In the analysis of XRD, ferrous iron waste was composed of $Fe_3O_4$ (magnetite), practically with $Fe^{2+}$ and $Fe^{3+}$. It had inverse spinel structure. In order to identify the adsorption characteristic of phosphate on ferrous iron waste, isotherm adsorption test was designed. Experimental results were well analyzed by Freundlich and Langmuir isotherm theories. Empirical constants of all isotherms applied increased with alkalinity in the samples, ranging from 1.2 to 235 $CaCO_3/L$. In the regeneration test, empirical constants of Langmuir isotherm, i.e., $q_{max}$ (maximum adsorption capacity) and b (energy of adsorption) decreased as the frequency of regeneration was increased. Experiment was further performed to evaluate the performance of the treatment scheme of chemical precipitation by ferrous iron waste followed by biological aerated filter (BAF). The overall removal efficiency in the system increased up to 80% and 90% for total phosphate (TP) and soluble phosphate (SP), respectively, and the corresponding effluent concentrations were detected below 2 mg/L and 1 mg/L for TP and SP, respectively. However, short-circuit problem was still unsolved operational consideration in this system. The practical concept applied in this study will give potential benefits in achieving environmentally sound wastewater treatment as well as environmentally compatible waste disposal in terms of closed substance cycle waste management.

Adsorption Pattern of the Herbicide, Bentazon and Its Metabolites on Soil (제초제 Bentazon과 그 대사산물들의 토양 중 흡착양상)

  • Kim, Jong-Soo;Kim, Jang-Eok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.3
    • /
    • pp.274-280
    • /
    • 2009
  • In order to elucidate the adsorption mechanism of the herbicide, bentazon and its metabolites on soil, their adsorption patterns on soil and six adsorbents were investigated with Freundlich, Langmuir and linear isotherm. Freundlich constants ($K_f$) and maximum adsorption amount($Q^0$) of bentazon on soil was 0.55 and 3.97. Kd and Koc values of it were 0.18 and 18. The all of metabolites used except deisopropylbentazon amounts sorbed on the soil were much higher than bentazon. The most of 8-hydroxybentazon was adsorbed on soil showing $K_f$ = 316.6, $Q^0$ = 3,488, Kd = 29.7 and Koc = 2,970. Bentazon, deisopropylbentazon and 8-hydroxybentazon were shown high affinity to anion exchange regardless of pH and $NH_2$ in low pH range. Reversed phase $C_{18}$ resulted in 100% retention of N-methylbentazon regardless of pH and other metabolites were retained below 40%. The AIBA was strongly adsorbed in silica gel, COOH and cation exchange phase but poor retention was on anion exchange sorbent. 2-Aminobenzoic acid showed an amphipathic nature which had high affinity for COOH and cation exchange phase at pH 7.0 as well as $NH_2$ and anion exchange sorbent at pH 3.0.

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue (커피찌꺼기 biochar를 활용한 구리의 흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Yeong-Jin;Kim, Seong-Heon;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.36 no.1
    • /
    • pp.22-28
    • /
    • 2017
  • BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.

Influence of Anoxic Selectors on Heavy Metal Removal by Activated Sludge

  • Niec, Jay H.;Cha, Daniel K.
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.431-435
    • /
    • 2000
  • The goal of this research is to compare the metal binding characteristics of an anoxic selector activated sludge system and a conventional activated sludge system. Metal biosorption by biomass harvested from experimental systems was determined by a series of batch experiments. Heavy metals studied in this research were zinc, cadmium, and nickel. The sorption isotherm showed that the selector sludge had significantly higher sorption capacity than did the control sludge. Metal biosorption behavior closely followed a Freundlich isotherm model for equilibrium concentrations. ECP contents of biomass estimated by alkali extraction technique showed that ECP levels in the selector sludge significantly higher than that in the sludge harvested from the conventional system, indicating that the higher metal sorption capacity of selector sludge may be due to the selection of the ECP-producing bacteria (i.e., Zoogloea sp.) by the selector system.

  • PDF

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies

  • Lim, Ji-Hyun;Kang, Hee-Man;Kim, Lee-Hyung;Ko, Seok-Oh
    • Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.79-84
    • /
    • 2008
  • Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.

Equilibrium modeling for adsorption of NO3- from aqueous solution on activated carbon produced from pomegranate peel

  • Rouabeh, I.;Amrani, M.
    • Advances in environmental research
    • /
    • v.1 no.2
    • /
    • pp.143-151
    • /
    • 2012
  • Nitrate removal from aqueous solution was investigated using $ZnCl_2$ and phosphoric acid activated carbon developed from pomegranate peel with particle size 0.4 mm. Potassium nitrate solution was used in batch adsorption experiments for nitrate removal from water. The effects of activated carbon dosage, time of contact, and pH were studied. The equilibrium time was fond to be 45 min. Two theoretical adsorption isotherms namely Langmuir and Freundlich were used to describe the experimental results. The Langmuir fit the isotherm with the theoretical adsorption capacity ($q_t$) was fond 78.125 mg g-1. Adsorption kinetics data were modeled using the pseudo-first, pseudo-second order, and intraparticle diffusion models. The results indicate that the second-order model best describes adsorption kinetic data. Results show activated carbon produced from pomegranate is effective for removal of nitrate from aqueous solution.

A Comparative Study for Removal of Mercury and Lead by Microorganisms (미생물흡착을 이용한 수은과 납의 제거에 관한 비교 연구)

  • 서정호;서명교;곽영규;강신묵;노종수;이국의;최윤찬
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.1
    • /
    • pp.98-103
    • /
    • 1998
  • A study on the removal of mercury and lead by microorganisms, Saccharomyces cerevisiae and Aureobasidium pullulans, was performed, in which the comparison of adsorption model between these two heavy metals was done. The amounts of mercury removed were more than those of lead in both microorganisms. In case of mercury, the adsorption isotherm of S. cerevisiae was accorded with Langmuir model but A. pullulans was followed to Freundlich model. In the case of lead, however, the adsorption isotherm had opposite results. The adsorption rate of mercury to S. cerevisiae was faster than that of A. pullulans, but in the case of lead, it revealed contrary results. It seems, therefore, that the type of microorganisms used as biosorbents should be selected differently with the type of heavy metals removed for applying these to real adsorption process.

  • PDF