Browse > Article
http://dx.doi.org/10.4491/eer.2008.13.2.079

Removal of Heavy Metals by Sawdust Adsorption: Equilibrium and Kinetic Studies  

Lim, Ji-Hyun (Department of Civil Engineering, Kyunghee University)
Kang, Hee-Man (Korea Highway & Transportation Technology Institute)
Kim, Lee-Hyung (Department of Civil and Environmental Eng., Kongju National University)
Ko, Seok-Oh (Department of Civil Engineering, Kyunghee University)
Publication Information
Abstract
Adsorption of heavy metals by sawdust was investigated to evaluate the effectiveness of using sawdust to remove heavy metals from aqueous solutions. Kinetic and isotherm studies were carried out by considering the effects of initial concentration and pH. The adsorption isotherms of heavy metals fitted the Langmuir or Freundlich model reasonably well. The adsorption capacity of metal was in the order $Pb^{2+}$ > $Cu^{2+}$ > $Zn^{2+}$. A high concentration of co-existing ions such as $Ca^{2+}$ and $Mg^{2+}$ depressed the adsorption of heavy metal. Adsorption data showed that metal adsorption on sawdust follows a pseudo-second-order reaction. Kinetic studies also indicated that both surface adsorption and intraparticle diffusion were involved in metal adsorption on sawdust. Column studies prove that sawdust could be effective biosorbent for the removal of heavy metals from aqueous phase.
Keywords
Adsorption; Breakthrough; Heavy metal; Isotherm; Kinetics; Sawdust;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Al-Qunaibit, M., Khalil, M., and Al-Wassil, A., "The effect of solvents on metal ion adsorption by the alga Chlorella vulgaris," Chemosphere, 60, 412-418 (2005)   DOI   ScienceOn
2 Sumner, M. E., and Miller, W. P., Cation exchange capacity and exchange coefficients. In : Sparks et al. (Eds) Method of Soil analysis, Part 3, Chemical analysis, American Society of Agronomy, Madison, WI, pp. 122-130 (1996)
3 Hur, J., and Schlautman, M. A., "Using selected operational descriptors to examine the heterogeneity within a bulk humic substance," Environ. Sci. Technol., 37, 880-887 (2003)   DOI   ScienceOn
4 Al-Asheh, S., and Duvnjak, Z., "Sorption of cadmium and other heavy metals by pine bark," J. Hazard. Mater., 56, 35-51 (1997)   DOI   ScienceOn
5 Kim, M.-S., Hong, S. C., and Chung, J. G., "Adsorption of Pb(II) on metal oxide particles containing aluminum and titanium in aqueous solutions," Environ. Eng. Res., 10, 45-53 (2005)   DOI   ScienceOn
6 Brown, P. A., Gill, S. A., and Allen, S. J., "Metal removal from wastewater using peat," Wat. Res., 16, 3907-3916 (2000)
7 Vijayaraghavan, K., Jegan, J., Palanivelu, K., and Velan, M., "Biosorption of copper, cobalt and nickel by mirine green alga Ulva reticulate in a packed column," Chemosphere, 60, 419-426 (2005)   DOI   ScienceOn
8 Taty-Costodes, V. C., Fauduet, H., Porte, C., and Delacroix, A., "Removal of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris," J. Hazard. Mater., B105, 121-142 (2003)
9 Jang, A., Seo, Y., and Bishop, P. L., "The removal of heavy metals in urban runoff by sorption on mulch," Env. Poll., 133, 117-127 (2005)   DOI   ScienceOn
10 Gardea-Torresdey, J. L., Tang, L., and Salvador, J. M., "Copper adsorption by esterified and unesterified fractions of Sphagnum peat moss and its different humic substances," J. Hazard. Mater., 48, 191-206 (1996)   DOI   ScienceOn
11 Singh, K. K., Singh, A. K., and Hasan, S. H., "Low cost bio-sorbent 'wheat bran' for the removal of cadmium from wastewater: Kinetic and equilibrium studies," Bioresour. Technol., 97, 994-1001 (2006)   DOI   ScienceOn
12 Kalavathy, M. H., Karthikeyan, T., Rajgopal, S., and Miranda, L. R., "Kinetic and isotherm studies of Cu(II) adsorption onto $H_3PO_4-activated$ rubber wood sawdust," J. Coll. Interf. Sci., 292, 354-362 (2005)   DOI   ScienceOn
13 Wikipedia, Electronegativity, http://en.wikipedia.org/wiki/Electronegativity (2007)
14 Stumm, W., and Morgan, J. J., Aquatic Chemistry: Chemical equilibria and rates in natural waters, Third ed., John Wiley & Sons, New York, pp. 238-240 (1996)
15 Taty-Costodes, V.C., Fauduet, H., Porte, C., and Ho, Y.-S., "Removal of lead(II) ions from synthetic and real effluent using immobilized Pinus sylvestris sawdust: Adsorption on a fixed-bed column," J. Hazard. Mater., B123, 135-144 (2005)
16 Al-Asheh, S., and Duvnjak, Z., "Sorption of heavy metals by canola meal," Water, Air, Soil Poll., 114, 251-276 (1999)   DOI   ScienceOn
17 Rangsivek, R., and Jekel, M. R., "Removal of dissolved metals by zero-valent iron (ZVI): Kinetics, equilibria, processes and implications for stormwater runoff treatment," Wat. Res., 39, 4153-4163 (2005)   DOI   ScienceOn
18 Yu, B., Zhang, Y., Shukla, A., Shukla, S. S., and Dorris, K. L., "The removal of heavy metals from aqueous solutions by sawdust adsorption - removal of lead and comparison of its adsorption with copper," J. Hazard. Mater., B84, 83-94 (2001)
19 Al-Degs, Y. S., El-Barghouthi, M. I., Issa, A. A., Khraisheh, M. A., and Walker, G. M., "Sorption of Zn(II), Pb(II), and Co(II) using natural sorbents: Equilibrium and kinetic studies," Wat. Res., 40, 2645-2658 (2006)   DOI   ScienceOn