DOI QR코드

DOI QR Code

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue

커피찌꺼기 biochar를 활용한 구리의 흡착특성

  • Park, Jong-Hwan (School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center,) ;
  • Kim, Hong-Chul (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Kim, Yeong-Jin (Environmental Toxicology Research Center, Korea Institute of Toxicology) ;
  • Kim, Seong-Heon (Division of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Seo, Dong-Cheol (Division of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University)
  • 박종환 (루이지애나주립대 식물환경토양과학부) ;
  • 김홍출 (경남과학기술대학교 제약공학과) ;
  • 김영진 (안전성평가연구소 환경독성연구센터) ;
  • 김성헌 (경상대학교 응용생명과학부 농생명산업 글로벌 인재 육성 사업단 농업생명과학원) ;
  • 서동철 (경상대학교 응용생명과학부 농생명산업 글로벌 인재 육성 사업단 농업생명과학원)
  • Received : 2017.01.31
  • Accepted : 2017.02.21
  • Published : 2017.03.31

Abstract

BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.

본 연구는 커피찌꺼기의 환경친화적인 재활용 방안을 모색하기 위하여 커피찌꺼기 biochar를 제조하고, 제조된 biochar를 이용하여 구리에 대한 흡착특성을 평가하였다. 커피찌꺼기 biochar에 대한 구리의 흡착은 반응 2시간 이내에 급격하게 일어나는 것을 알 수 있었으며, 2시간 이후부터는 천천히 평형상태에 도달하는 것을 알 수 있었다. 등온흡착 실험의 결과 Langmuir 및 Freundlich 등온흡착식 모두에서 CB600이 CB300에 비해 높은 흡착능을 보였다. 커피찌꺼기 biochar에 대한 구리의 흡착능 예측을 위한 최적모델로는 동적흡착모델의 경우 유사이차속도반응식, 그리고 등온흡착모델의 경우 Langmuir 등온식이 더 적합하였다. 또한 SEM-EDS 분석결과 구리 흡착 후 biochar 표면에 구리가 매우 높은 농도로 흡착되어 있었으며, 이들의 흡착은 biochar 표면의 양이온 교환과 밀접한 관계가 있을 것으로 판단된다. 이상의 결과를 미루어볼 때, 커피찌꺼기는 biochar 제조를 위한 재료로 충분히 활용이 가능하며, 구리 흡착제로 활용이 가능할 것으로 판단된다.

Keywords

Acknowledgement

Supported by : Gyeongnam National University of Science and Technology

References

  1. Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-23. https://doi.org/10.1016/j.chemosphere.2013.10.071
  2. Aydin, H., Bulut, Y., & Yerlikaya, C. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87(1), 37-45. https://doi.org/10.1016/j.jenvman.2007.01.005
  3. Bohn, H., McNeal, G., & O'connor, G. (1979). Soil Chemistry. p. 329. A Wiley-Interscience Publication, New York, USA.
  4. Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemicalcharacteristics of biochar. Bioresource Technology, 107, 419-428. https://doi.org/10.1016/j.biortech.2011.11.084
  5. Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and theirenhancement. In Biochar for environmental management science andtechnology, pp. 67-84, Earthscans, London, UK.
  6. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. BioresourceTechnology, 102(19), 8877-8884. https://doi.org/10.1016/j.biortech.2011.06.078
  7. Choi, Y. S., Shin, J. D., Lee, S. I., & Kim, S. C. (2015). Adsorption characteristics of aqueous ammonium using rice hull-derived biochar. Korean Journal of Environmental Agriculture, 34(3), 155-160. https://doi.org/10.5338/KJEA.2015.34.3.25
  8. Gume, B., Muleta, D., & Abate, D. (2013). Evaluation of locally available substrates for cultivation ofoyster mushroom (Pleurotusostreatus) in Jimma, Ethiopia. African Journal of Microbiology Research, 7(20), 2228-2237. https://doi.org/10.5897/AJMR12.895
  9. Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115-124. https://doi.org/10.1016/S0923-0467(98)00076-1
  10. Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50-56. https://doi.org/10.1016/j.biortech.2012.01.072
  11. Kim, B. M., Kang, C. H., Yang, J. K., Na, J. K., Jung, J. A., Jung, H. J., Lim, J. H., Ko, K. M., Kim, W. H., & Chang, Y. Y. (2012). Cu and Cd sorption of the biochar derived from coffee sludge. Journal of Soil and Groundwater Envrironemt, 17(2), 47-53.
  12. Lagergren, S. (1898). Zur Theorie der sogenannten adsorption gelöster, Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1-39.
  13. Lehmann, J., & Joseph, S. (2009). Biochar for Environmental Management-An Introduction. In Biochar for Environmental Management: Science and Technology, pp 1-12, Earthscan, London, UK.
  14. Lim, J. E., Lee, S. S., & Ok, Y. S. (2015). Effeciency of poultry manure biochar for stablilization of metals in contaminated soil. Journal of the Korean Society for Applied Biological Chemistry, 58(1), 39-50. https://doi.org/10.3839/jabc.2015.008
  15. Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr., C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review. Bioresource Technology, 160, 191-202. https://doi.org/10.1016/j.biortech.2014.01.120
  16. Na, C. K., Han, M. Y., & Park, H. J. (2011). Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents[I]. Journal of Korean Society of Environmental Engineers, 33, 606-616. https://doi.org/10.4491/KSEE.2011.33.8.606
  17. Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperaturesand their effects on a loamy sand. Annals of Environmental Science, 3, 195-206.
  18. Park, J. H., Kim, S. H., Shin, J. H., Kim, H. C., & Seo, D. C. (2015). Competitive adsorption characteristic of cupper and cadmium using biochar derived from phragmitescommunis. Korean Journal of Environmental Agriculture, 34(1), 21-29. https://doi.org/10.5338/KJEA.2015.34.1.10
  19. Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., & Gidarakos, E. (2012). Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by products. Journal of Environmental Management, 96(1), 35-42. https://doi.org/10.1016/j.jenvman.2011.10.010
  20. Saenger, M., Hartge, E., Werther, J., Ogada, T., & Siagi, Z. (2001). Combustion of coffeehusks. Renewable Energy, 23(1), 103-121. https://doi.org/10.1016/S0960-1481(00)00106-3
  21. Seo, D. C., Yu, K., & DeLaune, R. D. (2008). Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: Batch and column experiments. Chemosphere, 73(11), 1757-1764. https://doi.org/10.1016/j.chemosphere.2008.09.003
  22. Silva, M. A., Nebra, S. A., Machado, M. J., & Sanchez, C. G. (1998). The use of biomass residuesin the Brazilian soluble coffee industry. Biomass & Bioenergy, 14(5-6), 457-467. https://doi.org/10.1016/S0961-9534(97)10034-4
  23. Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2), 828-834. https://doi.org/10.1016/j.cej.2011.06.069
  24. Uchimiya, M., Chang, S., & Klasson, K. T., (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1-3), 432-441. https://doi.org/10.1016/j.jhazmat.2011.03.063
  25. Xu, X., Gao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358-368. https://doi.org/10.1007/s11356-012-0873-5
  26. Yakkala, K., Yu, M. R., Roh, H., Yang, J. K., & Chang, Y. Y. (2013). Buffalo weed(Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorptionin single and mixed system. Desalination Water Treat. 51(40-42), 7732-7745. https://doi.org/10.1080/19443994.2013.792546
  27. Yang, D., Liang, J., Wang, Y., Sun, F., Tao, H., Zhang, L., Zhang, Z., & Ho, C. T. (2016). Tea waste: an effective and economic substrate for oyster mushroom cultivation. Journal of the Science of Food and Agriculture 96(2), 680-684. https://doi.org/10.1002/jsfa.7140
  28. Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory produced black carbon (biochar). Environmental Science & Technology, 44(4), 1295-1301. https://doi.org/10.1021/es903140c

Cited by

  1. Overview for Coffee Grounds Recycling Technology and Future Concerns vol.35, pp.7, 2018, https://doi.org/10.9786/kswm.2018.35.7.587