Browse > Article
http://dx.doi.org/10.5338/KJEA.2005.24.4.370

Biosorption of Heavy Metals by Biomass of Seaweeds, Laminaria species, Ecklonia stolonifera, Gelidium amansii and Undaria pinnatifida  

Choi, Ik-Won (Department of Chemical Engineering, Osaka Prefecture University)
Kim, Sung-Un (Division of Applied life and Environmental Sciences, Sunchon National University)
Seo, Dong-Cheol (Division of Applied Life Science, Gyeongsang National University)
Kang, Byung-Hwa (Division of Applied life and Environmental Sciences, Sunchon National University)
Sohn, Bo-Kyoon (Division of Applied life and Environmental Sciences, Sunchon National University)
Rim, Yo-Sup (Division of Applied life and Environmental Sciences, Sunchon National University)
Heo, Jong-Soo (Division of Applied Life Science, Gyeongsang National University)
Cho, Ju-Sik (Division of Applied life and Environmental Sciences, Sunchon National University)
Publication Information
Korean Journal of Environmental Agriculture / v.24, no.4, 2005 , pp. 370-378 More about this Journal
Abstract
The characteristics of heavy metal biosorption on the seaweeds were investigated to develop a biological treatment technology for wastewater polluted with heavy metals. The heavy metal biosorption on seaweeds ranked in the tallowing order: U. pinnatifida$\geq$E. stolonifera$\geq$Laminaria sp.>G. amansii. The Pb was biosorbed in the range of $93{\sim}99%$, and the Cu and Cd were biosorbed in the range of $70{\sim}80%$ at the concentration of the heavy metal of $100mg/{\ell}$ respectively. The seaweed which was pretreated with $CaCl_2$ solution improved the biosorption of the heavy metals. The temperature and pH didn't affect the biosorption of heavy metals. The Langmuir isotherm reasonably fit the data of heavy metal biosorption compared to the Freundlich isotherm. The affinity of metals on the biosorption ranked in the following order: Pb>Zn>Cu>Cd. The biosorption efficiency of the heavy metals on the U. pinnatifida decreased in the multi-component rather than the single component. The heavy metals adsorbed on the U. pinnatifida were recovered using 0.3%-NTA. U. pinnatifida among the seaweed used in this work showed the best performance for the biosorption of the heavy metals.
Keywords
biosorption; seaweed; Undaria pinnatifida; Freundlich isotherm; Langmuir isotherms; adsorption/desorption cycle;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ruthven, D. W. (1984) Principles of adsorption and adsorption process, John Wiley & Sons, U.S.A
2 Suh, K. H., Ahn, K. H., Kim, B. J., Cho, J. K., Jin, H J., and Hong, Y. K. (1999) Biosorption and desorption of Pb by using Sargassum horneri, J. Korean Fish. Soc. 32(2), 333-337
3 Yan, G. and Viraraghavan, Y. (2003) Heavy-metal removal from aqueous solution by fungus Mucor rouxii, Water Research. 37, 4486-4496   DOI   ScienceOn
4 Kuh, S. E. and Kim, D. S. (2001) Studies on the Characteristics of Cadmium Biosorption by Undaria pinnatifida, J. of KSEE. 23(12), 2065-2075
5 Sakaguchi, T., Nakajima, A., and Horikoshi, T. (1981) Studies on the accumulation of heavy metal elements in biological systems. XVIII. Accumulation of molybdenum by green microalgae, Eur. J. Appl. Microbiol. Biotechnol. 12, 84-89   DOI
6 Leusch, A., Holan, Z. R., and Volesky, B. (1995) Biosorption of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae, J. Chem. Tech. Biotechnol. 62, 279-288   DOI   ScienceOn
7 Volesky, B. (1994) Advances in biosorption of metals : Selection of biomass types, FEMS Microbiology Reviews. 14, 291-302   DOI   ScienceOn
8 Kim, Y. H., Yoo, Y. J., and Lee, H. Y. (1995) Characteristics of lead adsorption by Undaria pinnatifida, Biotechnol. Lett. 17(3), 345-350   DOI   ScienceOn
9 Holan, Z. R. and Volesky, B. (1994) Biosorption of lead and nickel by biomass of marine algae, Biotechnol. Bioeng. 43(11), 1001-1009   DOI   ScienceOn
10 Lister, S. K. and Line, M. A. (2001) Potential utilization of sewage sludge and paper mill waste for biosorption of metals from polluted waterways, Bioresour. Technol. 79, 35-39   DOI   ScienceOn
11 Matheickal, J. T. and Yu, Q. (1999) Biosorption of lead (II) copper (II) from aqueous solutions by pre-treated biomass of australian marine algae. Bioresource Technology. 69, 223
12 Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40(9), 1361-1403   DOI
13 Lee, M. G., Lim, J. H., and Kam, S. K. (2002) Biosorption characteristics in the mixed metal solution by biosorbents of marine brown algae, Korean J. Chem. Eng. 19(2), 277-284   DOI   ScienceOn
14 Fourest, E. and Roux, J. C. (1992) Heavy metal biosorption by fungal mycelial by-products: rrechanism and influence of pH, Appl. Microbiol. Biotechnol. 37, 399-403   DOI
15 Lee, M. G., Suh, J. H., Kam, S. K., Lee, D. H., and Oh, Y. H.(1997) Characteristics of lead biosorption by biosorbents of marine brown algae, J. of the Korean Environmental Sciences Society. 6(5), 531-539
16 Cho, J. S., Park, I. N., Heo, J. S., and Lee, Y. S. (2004) Biosorption and desorption of heavy metals using Undaria sp., Kor. J. Environ. Agric. 23(2), 92-98   DOI   ScienceOn
17 Suh, K. H., Ahn, K. H., and Cho, M. C. (1999) Biosorption of $Pb^{2+}$ and $Cr^{3+}$ by using Sargassum homei, J. of the Korean Environmental Sciences Society. 8(3), 387-391
18 Doyle, R. J., Matthews, T. H., and Streips, U. N. (1980) Chemical basis for selectivity of metal ions by the Bacillus subtilis cell wall, J. Bacteriol. 143(1), 471-480
19 Guibal, E., Roulph, C., and Cloirec, P. L. (1992) Uranium biosorption by a filamentous fungus Mucor Miehei : pH effect on mechanisms and performances of uptake, Wat. Res. 26, 1139-1145   DOI   ScienceOn
20 Flemming, C. A., Ferris, F. G., Beveridge, T. J., and Bailey, G. W. (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites, Appl. Environ. Microbiol. 56(10), 3191-3203
21 Kuyucak, N. and Volesky, B. (1988) Biosorbents for recovery of metals from industrial solutions, Biotechnol. Lett. 10(2), 137-142   DOI
22 De, R. and Gadd, G. M. (1987) Copper adsorption by Rhiwpus arrhizus, Cladosporium resinae and Penicillium iialicum, Appl. Microbiol. Biotechnol. 26, 84-90   DOI
23 Makaskie, L. E. and Dean, A. C. R. (1984) Heavy metal accumulation by immobilized cells of a Citrobacter sp., Biotechnol. Lett. 6(2), 71-76   DOI
24 Yang, J. and Volesky, B. (1999) Cadmium biosorption rate in protonated Sagassum biomass, Environ. Sci. Technol. 33, 751-757   DOI   ScienceOn
25 Gadd, G. M. (1988) Accumulation of metals by microorganisms and algae. In Biotechnology 6b : Special Microbial Processes, Rehm, H J. (Ed.). VCH Verlagsgesellschaft. Weinheim. Germany. 401-433
26 Derenne, S., Largeau, C., Wein, A. B., Hetenyi, M., Bardoux, G., and Mariotti, A. (2000) Origin of variations in organic matter abundance and composition in a lithologically homogeneous maar-type oil shale deposit, Org. Geochem. 31, 787-798   DOI   ScienceOn
27 Say, R., Denizli, A., and Arica, M. Y. (2001) Biosorption of cadmium (II), lead (II), and copper (II) with the filamentous fungus Phanerochaete chrysosporium, Bioresour. Technol. 76, 67-70   DOI   ScienceOn
28 Kuyucak, N. and Volesky, B. (1989) Accumulation of cobalt by marine alga, Biotechnology and Bioengineering. 33, 809-814   DOI
29 Kuyucak, N. and Volesky, B. (1990) Biosorption by algal biomass. Biosorption of heavy metals. Volesky, B (Ed.). CRC Press. Inc., Boca Raton. FL. 173-198
30 Volesky, B. and Holan, Z. R. (1995) Biosorption of heavy metals, Biotechnology Progress. 11(3), 235-250.   DOI   ScienceOn