Browse > Article
http://dx.doi.org/10.5338/KJEA.2017.36.1.02

Adsorption Characteristics of Copper using Biochar Derived from Exhausted Coffee Residue  

Park, Jong-Hwan (School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center,)
Kim, Hong-Chul (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology)
Kim, Yeong-Jin (Environmental Toxicology Research Center, Korea Institute of Toxicology)
Kim, Seong-Heon (Division of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University)
Seo, Dong-Cheol (Division of Applied Life Science (BK21 plus) & Institute of Agriculture and Life Science, Gyeongsang National University)
Publication Information
Korean Journal of Environmental Agriculture / v.36, no.1, 2017 , pp. 22-28 More about this Journal
Abstract
BACKGROUND: There is very limited knowledge of the effects of biochar derived from exhausted coffee residue on metal adsorption processes. Furthermore, only limited information is available on the adsorption mechanism of copper. The aim of this study was to evaluate the absorption behaviors of copper by biochar derived from exhausted coffee residue. METHODS AND RESULTS: Biochars produced by pyrolysis of exhausted coffee residue at $300^{\circ}C$(CB300) and $600^{\circ}C$(CB600) were characterized and investigated as adsorbents for the removal of copper from aqueous solution. The results indicated that the adsorption equilibrium was achieved around 2 h and the pseudo-second-order kinetic model fit the data better than the pseudo-first-order kinetic model. The maximum Cu adsorption capacities of CB600 by Freundlich and Langmuir isotherms were higher than those of CB300. The adsorption data were well described by a Langmuir isotherm compare to Freundlich isotherm. CONCLUSION: Our results suggest that exhausted coffee residue can be used as feedstock materials to produce high quality biochar, which could be used as adsorbents to removal copper.
Keywords
Biochar; Copper; Exhausted coffee residue; Kinetic models; Langmuir isotherm;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S. S., & Ok, Y. S. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere 99, 19-23.   DOI
2 Aydin, H., Bulut, Y., & Yerlikaya, C. (2008). Removal of copper (II) from aqueous solution by adsorption onto low-cost adsorbents. Journal of Environmental Management, 87(1), 37-45.   DOI
3 Bohn, H., McNeal, G., & O'connor, G. (1979). Soil Chemistry. p. 329. A Wiley-Interscience Publication, New York, USA.
4 Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemicalcharacteristics of biochar. Bioresource Technology, 107, 419-428.   DOI
5 Chan, K. Y., & Xu, Z. (2009). Biochar: Nutrient properties and theirenhancement. In Biochar for environmental management science andtechnology, pp. 67-84, Earthscans, London, UK.
6 Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., & Hay, A. G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. BioresourceTechnology, 102(19), 8877-8884.   DOI
7 Choi, Y. S., Shin, J. D., Lee, S. I., & Kim, S. C. (2015). Adsorption characteristics of aqueous ammonium using rice hull-derived biochar. Korean Journal of Environmental Agriculture, 34(3), 155-160.   DOI
8 Inyang, M., Gao, B., Yao, Y., Xue, Y., Zimmerman, A. R., Pullammanappallil, P., & Cao, X. (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110, 50-56.   DOI
9 Gume, B., Muleta, D., & Abate, D. (2013). Evaluation of locally available substrates for cultivation ofoyster mushroom (Pleurotusostreatus) in Jimma, Ethiopia. African Journal of Microbiology Research, 7(20), 2228-2237.   DOI
10 Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115-124.   DOI
11 Kim, B. M., Kang, C. H., Yang, J. K., Na, J. K., Jung, J. A., Jung, H. J., Lim, J. H., Ko, K. M., Kim, W. H., & Chang, Y. Y. (2012). Cu and Cd sorption of the biochar derived from coffee sludge. Journal of Soil and Groundwater Envrironemt, 17(2), 47-53.
12 Lagergren, S. (1898). Zur Theorie der sogenannten adsorption gelöster, Stoffe, Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1-39.
13 Na, C. K., Han, M. Y., & Park, H. J. (2011). Applicability of theoretical adsorption models for studies on adsorption properties of adsorbents[I]. Journal of Korean Society of Environmental Engineers, 33, 606-616.   DOI
14 Lehmann, J., & Joseph, S. (2009). Biochar for Environmental Management-An Introduction. In Biochar for Environmental Management: Science and Technology, pp 1-12, Earthscan, London, UK.
15 Lim, J. E., Lee, S. S., & Ok, Y. S. (2015). Effeciency of poultry manure biochar for stablilization of metals in contaminated soil. Journal of the Korean Society for Applied Biological Chemistry, 58(1), 39-50.   DOI
16 Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr., C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-A critical review. Bioresource Technology, 160, 191-202.   DOI
17 Saenger, M., Hartge, E., Werther, J., Ogada, T., & Siagi, Z. (2001). Combustion of coffeehusks. Renewable Energy, 23(1), 103-121.   DOI
18 Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperaturesand their effects on a loamy sand. Annals of Environmental Science, 3, 195-206.
19 Park, J. H., Kim, S. H., Shin, J. H., Kim, H. C., & Seo, D. C. (2015). Competitive adsorption characteristic of cupper and cadmium using biochar derived from phragmitescommunis. Korean Journal of Environmental Agriculture, 34(1), 21-29.   DOI
20 Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., & Gidarakos, E. (2012). Adsorption of Cu(II) ions from aqueous solutions on biochars prepared from agricultural by products. Journal of Environmental Management, 96(1), 35-42.   DOI
21 Seo, D. C., Yu, K., & DeLaune, R. D. (2008). Comparison of monometal and multimetal adsorption in Mississippi River alluvial wetland sediment: Batch and column experiments. Chemosphere, 73(11), 1757-1764.   DOI
22 Silva, M. A., Nebra, S. A., Machado, M. J., & Sanchez, C. G. (1998). The use of biomass residuesin the Brazilian soluble coffee industry. Biomass & Bioenergy, 14(5-6), 457-467.   DOI
23 Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu(II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2), 828-834.   DOI
24 Uchimiya, M., Chang, S., & Klasson, K. T., (2011). Screening biochars for heavy metal retention in soil: role of oxygen functional groups. Journal of Hazardous Materials, 190(1-3), 432-441.   DOI
25 Xu, X., Gao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20(1), 358-368.   DOI
26 Yakkala, K., Yu, M. R., Roh, H., Yang, J. K., & Chang, Y. Y. (2013). Buffalo weed(Ambrosia trifida L. var. trifida) biochar for cadmium (II) and lead (II) adsorptionin single and mixed system. Desalination Water Treat. 51(40-42), 7732-7745.   DOI
27 Zimmerman, A. R. (2010). Abiotic and microbial oxidation of laboratory produced black carbon (biochar). Environmental Science & Technology, 44(4), 1295-1301.   DOI
28 Yang, D., Liang, J., Wang, Y., Sun, F., Tao, H., Zhang, L., Zhang, Z., & Ho, C. T. (2016). Tea waste: an effective and economic substrate for oyster mushroom cultivation. Journal of the Science of Food and Agriculture 96(2), 680-684.   DOI