• 제목/요약/키워드: fresh concrete

검색결과 667건 처리시간 0.025초

Incorporation of Crushed Sands and Tunisian Desert Sands in the Composition of Self Compacting Concretes Part II: SCC Fresh and Hardened States Characteristics

  • Rmili, Abdelhamid;Ouezdou, Mongi Ben;Added, Mhamed;Ghorbel, Elhem
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.11-14
    • /
    • 2009
  • This paper is interested in the incorporation of crushed sand and desert sand in the composition the self compacting concretes (SCC). Desert dune sand, which has a fine extra granulometry, and the crushed sand, which contains an important content of fines, can constitute interesting components for SCC. Part II consists in studying the behaviour of SCC containing various sands with different origins. These sands, with different sizes, consist of several combinations of rolled sand (RS), crushed sand (CS) and desert sand (DS). The study examines the influence of the granular combination of sands on the characteristics in the fresh and the hardened state of SCC. The results of the experimental tests showed an improvement of the workability of the fresh SCC by combining sands of varied granulometry. The addition of the DS to CS or to RS allowed the increase of the mixture viscosity but decreased the mechanical strengths. Furthermore, the CS-RS combinations increased the compressive and the tensile strengths of the studied SCC. The optimized formulations of sands gave the highest performances of the SCC.

Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC

  • Mazloom, Moosa;Allahabadi, Ali;Karamloo, Mohammad
    • Advances in concrete construction
    • /
    • 제5권6호
    • /
    • pp.587-611
    • /
    • 2017
  • This study focused on the influences regarding the use of polyepoxide-based polymer and silica fume (SF) on the fresh and hardened state properties of self-compacting lightweight concrete (SCLC) along with their impacts on electrical resistance and ultrasonic pulse velocity (UPV). To do so, two series of compositions each of which consists of twelve mixes, with water to binder (W/B) ratios of 0.35 and 0.4 were cast. Three different silica fume/binder ratios of 0, 5%, and 10% were considered along with four different polymer/binder ratios of 0, 5%, 10%, and 15%. Afterwards, the rupture modulus, tensile strength, 14-day, 28-day, and 90-day compressive strength, the UPV and the electrical resistance of the mixes were tested. The results indicated that although the use of polymer could enhance the passing and filling abilities, it could lead to a decrease of segregation resistance. In addition, the interaction of the SF and the polymeric contents enhanced the workability. However, the impacts regarding the use of polymeric contents on fresh state properties of SCLC were more prevalent than those regarding the use of SF. Besides the fresh state properties, the durability and mechanical properties of the mixes were affected due to the use of polymeric and SF contents. In other words, the use of the SF and the polymer enhanced the durability and mechanical properties of SCLC specimens.

Effect of coarse aggregates and sand contents on workability and static stability of self-compacting concrete

  • Mohamed, Sahraoui;Taye, Bouziani
    • Advances in concrete construction
    • /
    • 제7권2호
    • /
    • pp.97-105
    • /
    • 2019
  • In this paper, the workability and static stability were evaluated using a proposed test method. Workability and static stability represent a key property of self-compacting concrete (SCC) in fresh state. A number of standardized test methods were developed to assess these properties. However, no accelerated test method reliably predicts both workability and static stability of SCC. In the present work, a modified K-slump test method was developed to evaluate workability and static stability of SCC. In order to take implicit mixture variations of SCC constituents that can affect fresh SCC properties, a central composite design was adopted to highlight the effect of gravel to sand ratio (G/S), gravel 3/8 to gravel 8/15 ratio (G1/G2), water to cement ratio (W/C), marble powder to cement ratio (MP/C) and superplasticizer content (SP) on workability measured with slump and flow time (T50) tests and static stability measured with sieve stability test (Pi), segregation test index (SSI), Penetration test (Pd) and the proposed K-slump test (Km). The obtained results show that G/S ratio close to 1 and G1/G2 ratio close to 60% can be considered as optimal values to achieve a good workability while ensuring a sufficient static stability of SCC. Acceptable relationships were obtained between Slump flow, Pi, Pd and Km. Results show that the proposed K-slump test allow to assess both workability and static stability of fresh SCC mixtures.

Prediction of concrete compressive strength using non-destructive test results

  • Erdal, Hamit;Erdal, Mursel;Simsek, Osman;Erdal, Halil Ibrahim
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.407-417
    • /
    • 2018
  • Concrete which is a composite material is one of the most important construction materials. Compressive strength is a commonly used parameter for the assessment of concrete quality. Accurate prediction of concrete compressive strength is an important issue. In this study, we utilized an experimental procedure for the assessment of concrete quality. Firstly, the concrete mix was prepared according to C 20 type concrete, and slump of fresh concrete was about 20 cm. After the placement of fresh concrete to formworks, compaction was achieved using a vibrating screed. After 28 day period, a total of 100 core samples having 75 mm diameter were extracted. On the core samples pulse velocity determination tests and compressive strength tests were performed. Besides, Windsor probe penetration tests and Schmidt hammer tests were also performed. After setting up the data set, twelve artificial intelligence (AI) models compared for predicting the concrete compressive strength. These models can be divided into three categories (i) Functions (i.e., Linear Regression, Simple Linear Regression, Multilayer Perceptron, Support Vector Regression), (ii) Lazy-Learning Algorithms (i.e., IBk Linear NN Search, KStar, Locally Weighted Learning) (iii) Tree-Based Learning Algorithms (i.e., Decision Stump, Model Trees Regression, Random Forest, Random Tree, Reduced Error Pruning Tree). Four evaluation processes, four validation implements (i.e., 10-fold cross validation, 5-fold cross validation, 10% split sample validation & 20% split sample validation) are used to examine the performance of predictive models. This study shows that machine learning regression techniques are promising tools for predicting compressive strength of concrete.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

고로슬래그 분말을 혼화재로 사용한 고강도콘크리트의 기초적 성질에 대한 연구 (A Study on the Fundamental Properties of High-Strength Concrete Using Ground Granulated Blast-Furnace Slag as an Admixture)

  • 문한영;최연왕;문대중;송용규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.30-35
    • /
    • 1995
  • This paper presents fundamental experiment for the properties of high performance concrete in its fresh and hardened state made with ground granulated blast-furnace (GGBF) slag. The result is that the effect of decreasing xoncrete temperature is to the mixing ratio of GGBF slag, but it presents disadvantage in the slump loss phase. In addition to, we know that the splitting tensile strength, compressive strength and elastic modulus of concrete mixed with high fineness GGBF slag are increased at age 28days.

  • PDF

증점제를 이용한 고유동 콘크리트의 특성에 관한 실험적 연구-제1보: 굳지 않은 상태 의 특성- (A Fundamental Study on the Properties of High - Fluidity Concrete Using Viscosity Agent -Part 1 :Properties of Fresh Concrete -)

  • 반호영;박상준;윤기원;최응규;한천구
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.41-44
    • /
    • 1995
  • The purpose of this study is analyze to the properties of high fluidity concrete(W/C 35~50%) with the dosage of viscosity agent(Hydroxy Propyl Methyl Cellulose ; HPMC ; 15U), From the resuls, flowability was good about 200g/㎥. segregation-resisibility and placeability were good upward 300g/㎥, To synthetic, the dosage of viscosity agent are discovered best in 200~400g/㎥

  • PDF

염산용해열법의 콘크리트 강도 조기추정에 의한 레미콘 품질관리의 적용성 연구 -Fc=180Kg/$\textrm{cm}^2$를 중심으로- (An Application Study on Quality Control of Re-Mi-Con for Using the Early Estimating Method of Concrete Strength with the Test of Solution Heat of Hychrochioric Acid)

  • 한천구;윤기원
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.101-106
    • /
    • 1990
  • To estimate the concrete strength at fresh state is very important problem in quality control. So, this study is designed for analyzing the quality control application of practical use Re-Mi-Con with the early estimation method of concrete strength using the test of solution heat of hydrochloric acid.

  • PDF

사용재료의 품질변동이 고유동콘크리트의 특성에 미치는 영향-인천 LNG 인수기지 #213,214-TK를 중심으로- (An Effect on the Properties of High Flowing Concrete by Materials Variations-Focused on Inchon LNG Receiving Terminal #213,214 Tanks-)

  • 권영호;김무한
    • 콘크리트학회논문집
    • /
    • 제12권2호
    • /
    • pp.99-107
    • /
    • 2000
  • This research investigates experimentally an effect on the properties of the high flowing concrete to be poured in the under-ground slurry wall of Inchon LNG receiving terminal(#213,214-TK) according to variations of concrete materials. Variables for sensitivity test were selected items as followings. 1) Concrete temperature (3cases), 2) Unit water (5cases), 3) Fineness modulus of fine aggregate (5cases), 4) Particle size of lime stone powder (3cases), 5) Replacement ratio of blast-furnace slag (4cases) and 6) Addition ratio of high range water reducing agent (5cases). And fresh conditions of the super flowing concrete should be satisfied with required range including slump flow(65$\pm$5cm), 50cm reaching time of flow(4~10sec), V-lot flowing time(10~ 20sec), U-box height(min. 300mm) and air content(4$\pm$1%). As results for sensitivity test, considered flow-ability, self-compaction and segregation resistance of the high flowing concrete, material variations and conditions of fresh concrete should be satisfied with the range as follwings. 1) Concrete temperature are 10~2$0^{\circ}C$(below 3$0^{\circ}C$), 2) Surface moisture of fine aggregate is within $\pm$ 0.6%, 3) Fineness modulus of fine aggregate is 2.6$\pm$0.2, 4)Replacement ratio of blast-furnace slag is 45~50% and 5) Addition ratio of high range water reducing agent is within 1%. Based on the specification for quality control, we successfully finished concrete pouring on the under-ground slurry wall having 75,000㎥(#213,214-TK) and accumulated real date in site.

화쇄류 퇴적물을 혼입한 콘크리트의 기초특성 평가 (Evaluation for Fundamental Properties of Concrete mixed with Pyroclastic Flow Deposit)

  • 최형길;김규용;노구치 타카푸미
    • 콘크리트학회논문집
    • /
    • 제28권1호
    • /
    • pp.49-57
    • /
    • 2016
  • 실내실험으로서 화쇄류 퇴적물의 기초물성을 평가하고, 화쇄류 퇴적물의 혼입율에 따른 콘크리트의 굳지않은 성상 및 강도특성을 평가했다. 그 후, 실기 플랜트 제조실험을 실시해 화쇄류 퇴적물 혼입 콘크리트의 굳지않은 성상, 강도특성, 수축 특성 및 내구특성에 대해 검토했다. 그 결과, 화쇄류 퇴적물의 혼입에 의한 유해한 알칼리 실리카 반응은 발생하지 않았다. 더불어, 화쇄류 퇴적물에 의해 장기재령에 있어서의 강도향상 등의 포졸란 반응의 효과를 기대할 수 있다고 판단된다. 실기 플랜트 제조실험에 있어서도 화쇄류 퇴적물 혼입에 의한 공기량의 변화나 현저한 슬럼프 로스는 발생하지 않았고, 실기 플랜트로의 제조도 아무런 문제는 없다고 판단된다. 한편, 화쇄류 퇴적물을 혼입한 콘크리트의 강도특성, 수축특성 및 내구특성은 보통 콘크리트와 비교해서 동일한 수준으로 평가되었으며, 화쇄류 퇴적물을 혼입한 콘크리트의 경우, 콘크리트의 적절한 온도관리나 적절한 양생방법을 강구하는 것으로 건설재료 분야에 보다 유효하게 활용할 수 있을 것으로 사료된다.