DOI QR코드

DOI QR Code

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed, Amin (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University) ;
  • Ahmad A., Hakamy (Department of Physics, Umm Al-Qura University) ;
  • Abdullah M., Zeyad (Civil Engineering Department, College of Engineering, Jazan University) ;
  • Bassam A., Tayeh (Civil Engineering Department, Faculty of Engineering, Islamic University of Gaza) ;
  • Ibrahim Saad, Agwa (Civil and Architectural Constructions Department, Faculty of Technology and Education, Suez University)
  • Received : 2021.06.22
  • Accepted : 2022.12.14
  • Published : 2023.01.10

Abstract

High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

Keywords

Acknowledgement

The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code: (22UQU4250045DSR13).

References

  1. Abhilash, P., Nayak, D.K., Sangoju, B., Kumar, R. and Kumar, V. (2021), "Effect of nano-silica in concrete, A review", Constr. Build. Mater., 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347.
  2. Agar, O., Tekin, H.O., Sayyed, M., Korkmaz, M.E., Culfa, O. and Ertugay, C. (2019), "Experimental investigation of photon attenuation behaviors for concretes including natural perlite mineral", Result. Phys., 12, 237-243. https://doi.org/10.1016/j.rinp.2018.11.053.
  3. Agwa, I.S., Omar, O.M., Tayeh, B.A. and Abdelsalam, B.A. (2020), "Effects of using rice straw and cotton stalk ashes on the properties of lightweight self-compacting concrete", Constr. Build. Mater., 235, 117541. https://doi.org/10.1016/j.conbuildmat.2019.117541.
  4. Agwa, I.S., Zeyad, A.M., Tayeh, B.A. and Amin, M. (2022), "Effect of different burning degrees of sugarcane leaf ash on the properties of ultrahigh-strength concrete", J. Build. Eng., 104773. https://doi.org/10.1016/j.jobe.2022.104773.
  5. Agwa, I.S., Zeyad, A.M., Tayeh, B.A., Adesina, A., de Azevedo, A.R., Amin, M. and Hadzima-Nyarko, M. (2022), "A comprehensive review on the use of sugarcane bagasse ash as a supplementary cementitious material to produce eco-friendly concretes", Mater. Today: Proc., 65(2), 688-696. https://doi.org/10.1016/j.matpr.2022.03.264.
  6. Ahmad, M.N., Nadeem, S., Javed, M., Iqbal, S., Hassan, S.U., Aljazzar, S.O., ... & Abd-Rabboh, H.S. (2022), "Improving the thermal behavior and flame-retardant properties of poly (oanisidine)/mmt nanocomposites incorporated with poly (oanisidine) and clay nanofiller", Molec., 27(17), 5477. https://doi.org/10.3390/molecules27175477.
  7. Ahmad, M.N., Nadeem, S., Soltane, R., Javed, M., Iqbal, S., Kanwal, Z., Farid, M.F., Rabea, S., Elkaeed, E.B. and Aljazzar, S.O. (2022), "Synthesis, characterization, and antibacterial potential of poly (o-anisidine)/baso4 nanocomposites with enhanced electrical conductivity", Proc., 10(9), 1878. https://doi.org/10.3390/pr10091878.
  8. Ahmad, S., Ullah, H., Rehman, Z.U., Nawaz, M., Uddin, I., Parkash, A., Alamri, H.R., Alsaiari, N.S. and Javed, M.S. (2022), "Investigation on crystal-structure, thermal and electrical properties of pvdf nanocomposites with cobalt oxide and functionalized multi-wall-carbon-nanotubes", Nanomater., 12(16), 2796. https://doi.org/10.3390/nano12162796.
  9. Akbulut, S., Sehhatigdiri, A., Eroglu, H. and Celik, S. (2015), "A research on the radiation shielding effects of clay, silica fume and cement samples", Radiat. Phys. Chem., 117, 88-92. https://doi.org/10.1016/j.radphyschem.2015.08.003.
  10. Akkurt, I. and Canakci, H. (2011), "Radiation attenuation of boron doped clay for 662, 1173 and 1332 kev gamma rays", International Journal Of Radiation Research.
  11. Alaka, H.A. and Oyedele, L.O. (2016), "High volume fly ash concrete: The practical impact of using superabundant dose of high range water reducer", J. Build. Eng., 8, 81-90. https://doi.org/10.1016/j.jobe.2016.09.008.
  12. Aldred, J.M., Holland, T.C., Morgan, D.R., Roy, D.M., Bury, M.A., Hooton, R.D., Olek, J., Scali, M.J., Detwiler, R.J. and Jaber, T.M. (2006), "Guide for the use of silica fume in concrete", ACI-American Concrete Institute-Committee: Farmington Hills, MI, USA.
  13. Ali, R., Aslam, Z., Shawabkeh, R.A., Asghar, A. and Hussein, I.A. (2020), "Bet, ftir, and raman characterizations of activated carbon from waste oil fly ash", Turk. J. Chem., 44(2), 279-295. https://doi.org/10.3906/kim-1909-20.
  14. Al-Muntaser, A.A., Pashameah, R.A., Sharma, K., Alzahrani, E. and Tarabiah, A.E. (2022), "Reinforcement of structural, optical, electrical, and dielectric characteristics of cmc/pva based on gnp/zno hybrid nanofiller: Nanocomposites materials for energy-storage applications", Int. J. Energy Res., https://doi.org/10.1002/er.8695.
  15. Alomayri, T. (2021), "Mechanical and fracture behaviour of micro steel fibre-reinforced fly ash-based geopolymer paste containing nano caco3", J. Taibah Univ. Sci., 15(1), 391-406. https://doi.org/10.1080/16583655.2021.1984864.
  16. Alomayri, T. (2022), "Mechanical and microstructure characteristics of alkali-activated coal ash with α-phase ultrafine al2o3 nanoparticles and basalt fibres", J. Taibah Univ. Sci., 16(1), 646-659. https://doi.org/10.1080/16583655.2022.2098632.
  17. Al-Tersawy, S.H., El-Sadany, R.A. and Sallam, H. (2021), "Experimental gamma-ray attenuation and theoretical optimization of barite concrete mixtures with nanomaterials against neutrons and gamma rays", Constr. Build. Mater., 289, 123190. https://doi.org/10.1016/j.conbuildmat.2021.123190.
  18. Ameri, F., de Brito, J., Madhkhan, M. and Taheri, R.A. (2020), "Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics", J. Build. Eng., 29, 101118. https://doi.org/10.1016/j.jobe.2019.101118.
  19. Amin, M. and Tayeh, B.A. (2020), "Investigating the mechanical and microstructure properties of fibre-reinforced lightweight concrete under elevated temperatures", Case Stud. Constr. Mater., 13, e00459. https://doi.org/10.1016/j.cscm.2020.e00459.
  20. Amin, M., Attia, M.M., Agwa, I.S., Elsakhawy, Y., Abu El-hassan, K. and Abdelsalam, B.A. (2022), "Effects of sugarcane bagasse ash and nano eggshell powder on high-strength concrete properties", Case Stud. Constr. Mater., 17, e01528. https://doi.org/10.1016/j.cscm.2022.e01528.
  21. Amin, M., El-Aziz, A., Agwa, I.S. and Abu El-Hassan, K. (2022), "Properties and microstructure of high strength concrete incorporating different supplementary cementitious materials", Key Eng. Mater., 921, 247-257. https://doi.org/10.4028/pz32u07.
  22. Amin, M., Hakeem, I.Y., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Influence of recycled aggregates and carbon nanofibres on properties of ultra-high-performance concrete under elevated temperatures", Case Stud. Constr. Mater., 16, e01063. https://doi.org/10.1016/j.cscm.2022.e01063.
  23. Amin, M., Tayeh, B.A. and Agwa, I.S. (2020), "Effect of using mineral admixtures and ceramic wastes as coarse aggregates on properties of ultrahigh-performance concrete", J. Clean. Prod., 273, 123073. https://doi.org/10.1016/j.jclepro.2020.123073.
  24. Amin, M., Tayeh, B.A., Kandil, M.A., Agwa, I.S. and Abdelmagied, M.F. (2022), "Effect of rice straw ash and palm leaf ash on the properties of ultrahigh-performance concrete", Case Stud. Constr. Mater., 17, e01266. https://doi.org/10.1016/j.cscm.2022.e01266.
  25. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effect of high temperatures on mechanical, radiation attenuation and microstructure properties of heavyweight geopolymer concrete", Struct. Eng. Mech., 80(2), 181-199. https://doi.org/10.12989/sem.2021.80.2.181.
  26. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2021), "Effects of nano cotton stalk and palm leaf ashes on ultrahigh-performance concrete properties incorporating recycled concrete aggregates", Constr. Build. Mater., 302, 124196. https://doi.org/10.1016/j.conbuildmat.2021.124196.
  27. Amin, M., Zeyad, A.M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of ferrosilicon and silica fume on mechanical, durability, and microstructure characteristics of ultra high-performance concrete", Constr. Build. Mater., 320, 126233. https://doi.org/10.1016/j.conbuildmat.2021.126233.
  28. Ashoor, M., Khorshidi, A. and Sarkhosh, L. (2020), "Appraisal of new density coefficient on integrated-nanoparticles concrete in nuclear protection", Kerntechnik, 85(1), 9-14. https://doi.org/10.3139/124.190016.
  29. Attia, M.M., Abdelsalam, B.A., Amin, M., Agwa, I.S. and Abdelmagied, M.F. (2022), "Metal-nails waste and steel slag aggregate as alternative and eco-friendly radiation shielding composites", Build., 12(8), 1120. https://doi.org/10.3390/buildings12081120.
  30. Ban, C.C., Khalaf, M.A., Ramli, M., Ahmed, N.M., Ahmad, M.S., Ali, A.M.A., Dawood, E.T. and Ameri, F. (2021), "Modern heavyweight concrete shielding: Principles, industrial applications and future challenges, review", J. Build. Eng., 102290. https://doi.org/10.1016/j.jobe.2021.102290.
  31. Bashter, I.I. (1997), "Calculation of radiation attenuation coefficients for shielding concretes", Ann. Nucl. Energy, 24(17), 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0.
  32. Beigi, M.H., Berenjian, J., Omran, O.L., Nik, A.S. and Nikbin, I.M. (2013), "An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete", Mater. Des., 50, 1019-1029. https://doi.org/10.1016/j.matdes.2013.03.046.
  33. Beushausen, H. and Luco, L.F. (2016), "Performance-based specifications and control of concrete durability", RILEM TC, 66-72. https://doi.org/10.1007/978-94-017-7309-6.
  34. Bheel, N., Mahro, S.K. and Adesina, A. (2020), "Influence of coconut shell ash on workability, mechanical properties, and embodied carbon of concrete", Environ. Sci. Pollut. Res., 28(5), 5682-5692. https://doi.org/10.1007/s11356-020-10882-1.
  35. Chaunsali, P., Uvegi, H., Osmundsen, R., Laracy, M., Poinot, T., Ochsendorf, J. and Olivetti, E. (2018), "Mineralogical and microstructural characterization of biomass ash binder", Cement Concrete Compos., 89, 41-51. https://doi.org/10.1016/j.cemconcomp.2018.02.011.
  36. Choi, H.J. (2019), "Agricultural bio-waste for adsorptive removal of crude oil in aqueous solution", J. Mater. Cycl. Waste Manage., 21(2), 356-364. https://doi.org/10.1007/s10163-018-0797-3.
  37. de Azevedo, A.R., Amin, M., Hadzima-Nyarko, M., Agwa, I.S., Zeyad, A.M., Tayeh, B.A. and Adesina, A. (2022), "Possibilities for the application of agro-industrial wastes in cementitious materials: A brief review of the brazilian perspective", Clean. Mater., 3, 100040. https://doi.org/10.1016/j.clema.2021.100040.
  38. Dyson, N.A. (1993), Radiation Physics with Applications in Medicine and Biology, USA.
  39. Ecke, H., Menad, N. and Lagerkvist, A. (2002), "Treatment-oriented characterization of dry scrubber residue from municipal solid waste incineration", J. Mater. Cycl. Waste Manage., 4(2), 117-126. https://doi.org/10.1007/s10163-001-0063-x.
  40. Elkady, H.M., Yasien, A.M., Elfeky, M.S. and Serag, M.E. (2019), "Assessment of mechanical strength of nano silica concrete (nsc) subjected to elevated temperatures", J. Struct. Fire Eng., 10(1), 90-109. https://doi.org/10.1108/JSFE-10-2017-0041.
  41. Ersundu, A., Buyukyildiz, M., Ersundu, M.C., Sakar, E. and Kurudirek, M. (2018), "The heavy metal oxide glasses within the wo3-moo3-teo2 system to investigate the shielding properties of radiation applications", Prog. Nucl. Energy, 104, 280-287. https://doi.org/10.1016/j.pnucene.2017.10.008.
  42. Gencel, O., Bozkurt, A., Kam, E. and Korkut, T. (2011), "Determination and calculation of gamma and neutron shielding characteristics of concretes containing different hematite proportions", Ann. Nucl. Energy, 38(12), 2719-2723. https://doi.org/10.1016/j.anucene.2011.08.010.
  43. Ghosh, S., Bhattacharjya, S. and Chakraborty, S. (2007), "Compressive behaviour of short-fibre-reinforced concrete", Mag. Concrete Res., 59(8), 567-574. https://doi.org/10.1680/macr.2007.59.8.567.
  44. Gokce, H.S., Ozturk, B.C., Cam, N.F. andic-Cakir, O.J.C. and Composites, C. (2018), "Gamma-ray attenuation coefficients and transmission thickness of high consistency heavyweight concrete containing mineral admixture", Cement Concrete Compos., 92, 56-69. https://doi.org/10.1016/j.cemconcomp.2018.05.015.
  45. Hadzima-Nyarko, M., Nyarko, K.E., Djikanovic, D. and Brankovic, G. (2021), "Microstructural and mechanical characteristics of self-compacting concrete with waste rubber", Struct. Eng. Mech., 78(2), 175-186. https://doi.org/10.12989/sem.2021.78.2.175.
  46. Hakeem, I.Y., Agwa, I.S., Tayeh, B.A. and Abd-Elrahman, M.H. (2022), "Effect of using a combination of rice husk and olive waste ashes on high-strength concrete properties", Case Stud. Constr. Mater., 17, e01486. https://doi.org/10.1016/j.cscm.2022.e01486.
  47. Hakeem, I.Y., Amin, M., Abdelsalam, B.A., Tayeh, B.A., Althoey, F. and Agwa, I.S. (2022), "Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete", Struct. Eng. Mech., 82(3), 295-312. https://doi.org/10.12989/sem.2022.82.3.295.
  48. Hakeem, I.Y., Amin, M., Zeyad, A.M., Tayeh, B.A., Maglad, A.M. and Agwa, I.S. (2022), "Effects of nano sized sesame stalk and rice straw ashes on high-strength concrete properties", J. Clean. Prod., 370, 133542. https://doi.org/10.1016/j.jclepro.2022.133542.
  49. Han, B., Zhang, L. and Ou, J. (2017), Radiation Shielding Concrete, Smart and Multifunctional Concrete Toward Sustainable Infrastructures, Springer.
  50. Hanzic, L. and Ho, J.C.M. (2017), "Multi-sized fillers to improve strength and flowability of concrete", Adv. Cement Res., 29(3), 112-124. https://doi.org/10.1680/jadcr.16.00100.
  51. Hassan, H., Badran, H., Aydarous, A. and Sharshar, T. (2015), "Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays", Nucl. Instrum. Meth. Phys. Res. Sect. B: Beam Interact. Mater. Atom., 360, 81-89. https://doi.org/10.1016/j.nimb.2015.07.126.
  52. Heniegal, A.M., Agwa, I.S., Youssef, H. and Amin, M. (2022), "Properties and durability of high performance heavy weight concrete incorporating black sand and different heavy weight aggregates types", NeuroQuantology, 20(8), 2056-2069.
  53. Heniegal, A.M., Amin, M., Nagib, S., Youssef, H. and Agwa, I.S. (2022), "Effect of nano ferrosilicon and heavyweight fine aggregates on the properties and radiation shielding of ultrahigh performance heavyweight concrete", Case Stud. Constr. Mater., 17, e01543. https://doi.org/10.1016/j.cscm.2022.e01543.
  54. International Energy Agency, I.E.A. (2020), Organisation for Economic Co-operation and Development, Paris, France. 
  55. Jalal, M. (2013), "Influence of class f fly ash and silica nano-micro powder on water permeability and thermal properties of high performance cementitious composites", Sci. Eng. Compos. Mater., 20(1), 41-46, https://doi.org/10.1515/secm-2012-0054.
  56. Jankovic, K., Stankovic, S., Bojovic, D., Stojanovic, M. and Antic, L. (2016), "The influence of nano-silica and barite aggregate on properties of ultra high performance concrete", Constr. Build. Mater., 126, 147-156. https://doi.org/10.1016/j.conbuildmat.2016.09.026.
  57. Johari, M.M., Brooks, J., Kabir, S. and Rivard, P. (2011), "Influence of supplementary cementitious materials on engineering properties of high strength concrete", Constr. Build. Mater., 25(5), 2639-2648. https://doi.org/10.1016/j.conbuildmat.2010.12.013.
  58. Kadik, A., Boutchicha, D., Bali, A. and Cherrak, M. (2020), "Glass powder admixture effect on the dynamic properties of concrete, multi-excitation method", Struct. Eng. Mech., 74(5), 671-678. https://doi.org/10.12989/sem.2020.74.5.671.
  59. Kadri, E.H. and Duval, R. (2009), "Hydration heat kinetics of concrete with silica fume", Constr. Build. Mater., 23(11), 3388-3392. https://doi.org/10.1016/j.conbuildmat.2009.06.008.
  60. Karthick, B. and Muthuraj, M. (2021), "Effect of medium coarse aggregate on fracture properties of ultra high strength concrete", Struct. Eng. Mech., 77(1), 103-114. https://doi.org/10.12989/sem.2021.77.1.103.
  61. Khalaf, M.A., Ban, C.C. and Ramli, M. (2019), "The constituents, properties and application of heavyweight concrete: A review", Constr. Build. Mater., 215, 73-89. https://doi.org/10.1016/j.conbuildmat.2019.04.146.
  62. Khalaf, M.A., Ban, C.C., Ramli, M., Ahmed, N.M., Sern, L.J. and Khaleel, H.A. (2020), "Physicomechanical and gamma-ray shielding properties of high-strength heavyweight concrete containing steel furnace slag aggregate", J. Build. Eng., 30, 101306. https://doi.org/10.1016/j.jobe.2020.101306.
  63. Khalaf, M.A., Cheah, C.B., Ramli, M., Ahmed, N.M. and Al-Shwaiter, A. (2021), "Effect of nano zinc oxide and silica on mechanical, fluid transport and radiation attenuation properties of steel furnace slag heavyweight concrete", Constr. Build. Mater., 274, 121785. https://doi.org/10.1016/j.conbuildmat.2020.121785.
  64. Khan, M.I. and Lynsdale, C. (2002), "Strength, permeability, and carbonation of high-performance concrete", Cement Concrete Res., 32(1), 123-131. https://doi.org/10.1016/S0008-8846(01)00641-X.
  65. Kounakoff, B.A., Hanzic, L. and Ho, J.C.M. (2017), "Limestone and silica fume to improve concurrent flowability-segregation limits of concrete", Mag. Concrete Res., 69(23), 1189-1202. https://doi.org/10.1680/jmacr.16.00387.
  66. Kwan, A.K.H. and Wong, H.H.C. (2008), "Packing density of cementitious materials: Part 2-Packing and flow of opc+ pfa+ csf", Mater. Struct., 41(4), 773-784. https://doi.org/10.1617/s11527-007-9281-6.
  67. Lai, M., Hanzic, L. and Ho, J.C.M. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047
  68. Lai, M.H., Binhowimal, S.A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2020), "Cause and mitigation of dilatancy in cement powder paste", Constr. Build. Mater., 236, 117595. https://doi.org/10.1016/j.conbuildmat.2019.117595.
  69. Lai, M.H., Binhowimal, S.A.M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2020), "Dilatancy mitigation of cement powder paste by pozzolanic and inert fillers", Struct. Concrete, 21(3), 1164-1180. https://doi.org/10.1002/suco.201900320.
  70. Lai, M.H., Griffith, A. M., Hanzic, L., Wang, Q. and Ho, J.C.M. (2021), "Interdependence of passing ability, dilatancy and wet packing density of concrete", Constr. Build. Mater., 270, 121440. https://doi.org/10.1016/j.conbuildmat.2020.121440.
  71. Lazaro, A., Quercia, G. and Brouwers, H. (2012), "Production and application of a new type of nano-silica in concrete", Proceedings of the International Conference on Building Materials, Finger-Institut fur Baustoffkunde, Weimar, Germany,
  72. Lothenbach, B., Scrivener, K. and Hooton, R. (2011), "Supplementary cementitious materials", Cement Concrete Res., 41(12), 1244-1256. https://doi.org/10.1016/j.cemconres.2010.12.001.
  73. Mahdy, M., Speare, P. and Abdel-Reheem, A. (2002), "Shielding properties of heavyweight, high strength concrete", 2nd Material Specialty Conference of the Canadian Society for Civil Engineering, Montreal, Quebec, June.
  74. Maslehuddin, M., Naqvi, A., Ibrahim, M. and Kalakada, Z. (2013), "Radiation shielding properties of concrete with electric arc furnace slag aggregates and steel shots", Ann. Nucl. Energy, 53, 192-196. https://doi.org/10.1016/j.anucene.2012.09.006.
  75. Maybury, J., Ho, J.C.M. and Binhowimal, S.A.M. (2017), "Fillers to lessen shear thickening of cement powder paste", Constr. Build. Mater., 142, 268-279. https://doi.org/10.1016/j.conbuildmat.2017.03.076.
  76. Mazzoli, A., Corinaldesi, V., Donnini, J., Di Perna, C., Micheli, D., Vricella, A., Pastore, R., Bastianelli, L., Moglie, F. and Primiani, V.M. (2018), "Effect of graphene oxide and metallic fibers on the electromagnetic shielding effect of engineered cementitious composites", J. Build. Eng., 18, 33-39. https://doi.org/10.1016/j.jobe.2018.02.019.
  77. Mesbahi, A. and Ghiasi, H. (2018), "Shielding properties of the ordinary concrete loaded with micro-and nano-particles against neutron and gamma radiations", Appl. Radiat. Isotop., 136, 27-31. https://doi.org/10.1016/j.apradiso.2018.02.004.
  78. Mostofinejad, D., Reisi, M., Shirani, A.J.C. and Materials, B. (2012), "Mix design effective parameters on γ-ray attenuation coefficient and strength of normal and heavyweight concrete", Constr. Build. Mater., 28(1), 224-229. https://doi.org/10.1016/j.conbuildmat.2011.08.043.
  79. Nematzadeh, M., Baradaran-Nasiri, A. and Hosseini, M. (2019), "Effect of pozzolans on mechanical behavior of recycled refractory brick concrete in fire", Struct. Eng. Mech., 72(3), 339-354. https://doi.org/10.12989/sem.2019.72.3.339.
  80. Nikbin, I.M., Shad, M., Jafarzadeh, G.A. and Dezhampanah, S. (2019), "An experimental investigation on combined effects of nano-wo3 and nano-bi2o3 on the radiation shielding properties of magnetite concretes", Prog. Nucl. Energy, 117, 103103. https://doi.org/10.1016/j.pnucene.2019.103103.
  81. Norhasri, M.M., Hamidah, M. and Fadzil, A.M. (2017), "Applications of using nano material in concrete: A review", Constr. Build. Mater., 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005.
  82. Ouda, A.S. (2015), "Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding", Prog. Nucl. Energy, 79, 48-55. https://doi.org/10.1016/j.pnucene.2014.11.009.
  83. Ouda, A.S. and Abdelgader, H.S. (2019), "Assessing the physical, mechanical properties, and γ-ray attenuation of heavy density concrete for radiation shielding purposes", Geosyst. Eng., 22(2), 72-80. https://doi.org/10.1080/12269328.2018.1469434.
  84. Ozen, S., Sengul, C., Erenoglu, T., Colak, u., Reyhancan, I.A. and Tasdemi̇ r, M.A. (2016), "Properties of heavyweight concrete for structural and radiation shielding purposes", Arab. J. Sci. Eng., 41(4), 1573-1584. https://doi.org/10.1007/s13369-015-1868-6.
  85. Ozyildirim, C. and Zegetosky, C. (2010), "Exploratory investigation of nanomaterials to improve strength and permeability of concrete", Transp. Res. Record, 2142(1), 1-8. https://doi.org/10.3141/2142-01.
  86. Ozyildirim, H.C. and Zegetosky, C. (2010), "Laboratory investigation of nanomaterials to improve the permeability and strength of concrete", Report No., Virginia Transportation Research Council,
  87. Papachristoforou, M. and Papayianni, I. (2018), "Radiation shielding and mechanical properties of steel fiber reinforced concrete (sfrc) produced with eaf slag aggregates", Radiat. Phys. Chem., 149, 26-32. https://doi.org/10.1016/j.radphyschem.2018.03.010.
  88. Rezaei-Ochbelagh, D., Azimkhani, S. and Mosavinejad, H.G. (2012), "Shielding and strength tests of silica fume concrete", Ann. Nucl. Energy, 45, 150-154. https://doi.org/10.1016/j.anucene.2012.02.006.
  89. Rezania, M., Panahandeh, M., Razavi, S. and Berto, F. (2019), "Experimental study of the simultaneous effect of nano-silica and nano-carbon black on permeability and mechanical properties of the concrete", Theor. Appl. Fract. Mech., 104, 102391. https://doi.org/10.1016/j.tafmec.2019.102391.
  90. Saad, M., Agwa, I.S., Abdelsalam Abdelsalam, B. and Amin, M. (2020), "Improving the brittle behavior of high strength concrete using banana and palm leaf sheath fibers", Mech. Adv. Mater. Struct., 29(4), 564-573. https://doi.org/10.1080/15376494.2020.1780352.
  91. Said, A.M., Zeidan, M.S., Bassuoni, M. and Tian, Y. (2012), "Properties of concrete incorporating nano-silica", Constr. Build. Mater., 36, 838-844. https://doi.org/10.1016/j.conbuildmat.2012.06.044.
  92. Sayyed, M.I., Kaky, K.M., Gaikwad, D.K., Agar, O., Gawai, U.P. and Baki, S.O. (2019), "Physical, structural, optical and gamma radiation shielding properties of borate glasses containing heavy metals (bi2o3/moo3)", J. Non-Crystal. Solid., 507, 30-37. https://doi.org/10.1016/j.jnoncrysol.2018.12.010.
  93. Sayyed, M.I., Tekin, H.O., Kilicoglu, O., Agar, O. and Zaid, M.H.M. (2018), "Shielding features of concrete types containing sepiolite mineral: Comprehensive study on experimental, xcom and mcnpx results", Result. Phys., 11, 40-45. https://doi.org/10.1016/j.rinp.2018.08.029.
  94. Shams, T., Eftekhar, M. and Shirani, A. (2018), "Investigation of gamma radiation attenuation in heavy concrete shields containing hematite and barite aggregates in multi-layered and mixed forms", Constr. Build. Mater., 182, 35-42. https://doi.org/10.1016/j.conbuildmat.2018.06.032.
  95. Sharma, A., Reddy, G., Varshney, L., Bharathkumar, H., Vaze, K., Ghosh, A., Kushwaha, H. and Krishnamoorthy, T. (2009), "Experimental investigations on mechanical and radiation shielding properties of hybrid lead-steel fiber reinforced concrete", Nucl. Eng. Des., 239(7), 1180-1185. https://doi.org/10.1016/j.nucengdes.2009.02.017.
  96. Sharma, A., Sayyed, M.I., Agar, O., Kacal, M.R., Polat, H. and Akman, F. (2020), "Photon-shielding performance of bismuth oxychloride-filled polyester concretes", Mater. Chem. Phys., 241, 122330. https://doi.org/10.1016/j.matchemphys.2019.122330.
  97. Sharma, G. and Singh, K. (2019), "Recycling and utilization of agro-food waste ashes: Syntheses of the glasses for wide-band gap semiconductor applications", J. Mater. Cycl. Waste Manage., 21(4), 801-809. https://doi.org/10.1007/s10163-019-00839-z.
  98. Song, H.W., Pack, S.W., Nam, S.H., Jang, J.C. and Saraswathy, V. (2010), "Estimation of the permeability of silica fume cement concrete", Constr. Build. Mater., 24(3), 315-321. https://doi.org/10.1016/j.conbuildmat.2009.08.033.
  99. Tekin, H., Sayyed, M. and Issa, S.A. (2018), "Gamma radiation shielding properties of the hematite-serpentine concrete blended with wo3 and bi2o3 micro and nano particles using mcnpx code", Radiat. Phys. Chem., 150, 95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002.
  100. Tekin, H.O., Sayyed, M.I. and Issa, S.A. (2018), "Gamma radiation shielding properties of the hematite-serpentine concrete blended with wo3 and bi2o3 micro and nano particles using mcnpx code", Rad. Phys. Chem., 150, 95-100. https://doi.org/10.1016/j.radphyschem.2018.05.002.
  101. Tekin, H.O., Sayyed, M.I., Altunsoy, E.E. and Manici, T. (2017), "Shielding properties and effects of wo3 and pbo on mass attenuation coefficients by using mcnpx code", Dig. J. Nanomater. Biostruct., 12(3), 861-867.
  102. Tekle, B.H., Cui, Y. and Khennane, A. (2020), "Bond properties of steel and sand-coated gfrp bars in alkali activated cement concrete", Struct. Eng. Mech., 75(1), 123-131. https://doi.org/10.12989/sem.2020.75.1.123.
  103. Tobbala, D. (2019), "Effect of nano-ferrite addition on mechanical properties and gamma ray attenuation coefficient of steel fiber reinforced heavy weight concrete", Constr. Build. Mater., 207, 48-58. https://doi.org/10.1016/j.conbuildmat.2019.02.099.
  104. Tufekci, M.M. and Gokce, A. (2018), "Development of heavyweight high performance fiber reinforced cementitious composites (hpfrcc)-part ii: X-ray and gamma radiation shielding properties", Constr. Build. Mater., 163, 326-336. https://doi.org/10.1016/j.conbuildmat.2017.12.086.
  105. Turkmen, I., Ozdemir, Y., Kurudirek, M., Demir, F., Simsek, O. and Demirboga, R. (2008), "Calculation of radiation attenuation coefficients in portland cements mixed with silica fume, blast furnace slag and natural zeolite", Ann. Nucl. Energy, 35(10), 1937-1943. https://doi.org/10.1016/j.anucene.2008.03.012.
  106. Verdipoor, K., Alemi, A. and Mesbahi, A. (2018), "Photon mass attenuation coefficients of a silicon resin loaded with wo3, pbo, and bi2o3 micro and nano-particles for radiation shielding", Radiat. Phys. Chem., 147, 85-90. https://doi.org/10.1016/j.radphyschem.2018.02.017.
  107. Waly, E.S.A. and Bourham, M.A. (2015), "Comparative study of different concrete composition as gamma-ray shielding materials", Ann. Nucl. Energy, 85, 306-310. https://doi.org/10.1016/j.anucene.2015.05.011.
  108. Wang, H. and Wang, L. (2013), "Experimental study on static and dynamic mechanical properties of steel fiber reinforced lightweight aggregate concrete", Constr. Build. Mater., 38, 1146-1151. https://doi.org/10.1016/j.conbuildmat.2012.09.016.
  109. Wong, H.H.C. and Kwan, A.K.H. (2008), "Packing density of cementitious materials: Part 1-Measurement using a wet packing method", Mater. Struct., 41(4), 689-701. https://doi.org/10.1617/s11527-007-9274-5.
  110. Wu, Z., Shi, C., He, W. and Wu, L. (2016), "Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete", Constr. Build. Mater., 103, 8-14. https://doi.org/10.1016/j.conbuildmat.2015.11.028.
  111. Yao, Y., Zhang, X., Li, M., Yang, R., Jiang, T. and Lv, J. (2016), "Investigation of gamma ray shielding efficiency and mechanical performances of concrete shields containing bismuth oxide as an environmentally friendly additive", Radiat. Phys. Chem., 127, 188-193. https://doi.org/10.1016/j.radphyschem.2016.06.028.
  112. Yousefzad Farrokhi, F. and Kazanc, F. (2018), "Combustion behavior and kinetics of turkish lignite blended with biomass/magnesite dust", J. Energy Eng., 144(6), 04018064. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000579.
  113. Yuan, T.F., Choi, J.S., Kim, S.K. and Yoon, Y.S. (2021), "Assessment of steel slag and steel fiber to control electromagnetic shielding in high-strength concrete", KSCE J. Civil Eng., 25(3), 920-930. https://doi.org/10.1007/s12205-021-0629-1.
  114. Zaman Khan, Q.U., El Ouni, M.H., Raza, A. and Alomayri, T. (2022), "Mechanical behavior of electronic waste concrete columns reinforced with structural fibers and glass fiber reinforced polymer bars: Experimental and analytical investigation", Adv. Struct. Eng., 25(2), 374-391. https://doi.org/10.1177/13694332211049988.
  115. Zayed, A.M., Masoud, M.A., Rashad, A.M., El-Khayatt, A.M., Sakr, K., Kansouh, W.A. and Shahien, M.G. (2020), "Influence of heavyweight aggregates on the physico-mechanical and radiation attenuation properties of serpentine-based concrete", Constr. Build. Mater., 260, 120473. https://doi.org/10.1016/j.conbuildmat.2020.120473.
  116. Zeyad, A.M. (2020), "Effect of fibers types on fresh properties and flexural toughness of self-compacting concrete", J. Mater. Res. Technol., 9(3), 4147-4158. https://doi.org/10.1016/j.jmrt.2020.02.042.
  117. Zeyad, A.M. and Almalki, A. (2020), "Influence of mixing time and superplasticizer dosage on self-consolidating concrete properties", J. Mater. Res. Technol., 9(3), 6101-6115. https://doi.org/10.1016/j.jmrt.2020.04.013.
  118. Zeyad, A.M., Hakeem, I.Y., Amin, M., Tayeh, B.A. and Agwa, I.S. (2022), "Effect of aggregate and fibre types on ultra-high-performance concrete designed for radiation shielding", J. Build. Eng., 58, 104960. https://doi.org/10.1016/j.jobe.2022.104960.
  119. Zeyad, A.M., Johari, M.M., Tayeh, B.A. and Yusuf, M.O. (2016), "Efficiency of treated and untreated palm oil fuel ash as a supplementary binder on engineering and fluid transport properties of high-strength concrete", Constr. Build. Mater., 125, 1066-1079. https://doi.org/10.1016/j.conbuildmat.2016.08.065.