Browse > Article
http://dx.doi.org/10.12989/acc.2017.5.6.587

Effect of silica fume and polyepoxide-based polymer on electrical resistivity, mechanical properties, and ultrasonic response of SCLC  

Mazloom, Moosa (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
Allahabadi, Ali (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
Karamloo, Mohammad (Department of Civil Engineering, Shahid Rajaee Teacher Training University)
Publication Information
Advances in concrete construction / v.5, no.6, 2017 , pp. 587-611 More about this Journal
Abstract
This study focused on the influences regarding the use of polyepoxide-based polymer and silica fume (SF) on the fresh and hardened state properties of self-compacting lightweight concrete (SCLC) along with their impacts on electrical resistance and ultrasonic pulse velocity (UPV). To do so, two series of compositions each of which consists of twelve mixes, with water to binder (W/B) ratios of 0.35 and 0.4 were cast. Three different silica fume/binder ratios of 0, 5%, and 10% were considered along with four different polymer/binder ratios of 0, 5%, 10%, and 15%. Afterwards, the rupture modulus, tensile strength, 14-day, 28-day, and 90-day compressive strength, the UPV and the electrical resistance of the mixes were tested. The results indicated that although the use of polymer could enhance the passing and filling abilities, it could lead to a decrease of segregation resistance. In addition, the interaction of the SF and the polymeric contents enhanced the workability. However, the impacts regarding the use of polymeric contents on fresh state properties of SCLC were more prevalent than those regarding the use of SF. Besides the fresh state properties, the durability and mechanical properties of the mixes were affected due to the use of polymeric and SF contents. In other words, the use of the SF and the polymer enhanced the durability and mechanical properties of SCLC specimens.
Keywords
polyepoxide-based polymer; silica fume; self-compacting lightweight concrete; mechanical properties; durability; ultrasonic pulse velocity;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Zarghami, E., Fatourehchi, D. and Karamloo, M. (2017), "Impact of daylighting design strategies on social sustainability through the built environment sustainable development".
2 Zeyad, A.M., Megat Johari, M.A., Tayeh, B.A. and Yusuf, M.O. (2017), "Pozzolanic reactivity of ultrafine palm oil fuel ash waste on strength and durability performances of high strength concrete", J. Clean Pro. 144, 511-522.   DOI
3 Mazloom, M., Ramezanianpour, A.A. and Brooks, J.J. (2004), "Effect of silica fume on mechanical properties of high-strength concrete", Cement Concrete Compos., 26(4), 347-357.
4 Mazloom, M., Saffari, A. and Mehrvand, M. (2015), "Compressive, shear and torsional strength of beams made of self-compacting concrete", Comput. Concrete,15(6), 935-950.   DOI
5 Mazloom, M. and Yoosefi, M.M. (2013), "Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks", Comput. Concrete,12(3), 285-301.   DOI
6 Mehta, P.K. and Monteiro, P.J.M. (2006), Concrete: Microstructure, Properties and Materials, 3rd Edition, McGraw-Hill, New York, U.S.A.
7 Mohammadhosseini, H., Yatim, J.M., Sam, A.R.M. and Awal, A.S.M.A. (2017), "Durability performance of green concrete composites containing waste carpet fibers and palm oil fuel ash", J. Clean Prod., 144, 448-458.   DOI
8 Moosa, M. and Yoosefi, M.M. (2011), "Estimating the long-term strength of self-compacting concrete from short-term tests", J. Civil Eng. Archit., 5, 68-76.
9 Onuaguluchi, O. and Banthia, N. (2017), "Durability performance of polymeric scrap tire fibers and its reinforced cement mortar", Mater. Struct., 50(2), 158.   DOI
10 Pacheco-Torgal, F. and Jalali, S. (2009), "Sulphuric acid resistance of plain, polymer modified, and fly ash cement concretes", Constr. Build. Mater. 23, 3485-3491.   DOI
11 Papanicolaou, C.G. and Kaffetzakis, M.I. (2011), "Lightweight aggregate self-compacting concrete: State-of-the-art & pumice application", J. Adv. Concrete Technol., 9, 15-29.   DOI
12 Rajabipour, F., Weiss, J. and Abraham, D.M. (2004), "In-situ electrical conductivity measurements to assess moisture and ionic transport in concrete", Proceedings of the International RILEM Symposium on Concrete Science and Engineering: A Tribute to Arnon Bentur.
13 Ranade, R., Zhang, J., Lynch, J.P. and Li, V.C. (2014), "Influence of micro-cracking on the composite resistivity of engineered cementitious composites", Cement Concrete Res., 58, 1-12.   DOI
14 Roudak, M.A., Shayanfar, M.A., Barkhordari, M.A. and Karamloo, M. (2017a), "A new three-phase algorithm for computation of reliability index and its application in structural mechanics MeReC", 85, 53-60.
15 Roudak, M.A., Shayanfar, M.A., Barkhordari, M.A. and Karamloo, M. (2017b), "A robust approximation method for nonlinear cases of structural reliability analysis", IJMS.
16 Vakhshouri, B. and Nejadi, S. (2017), "Compressive strength and mixture proportions of self-compacting lightweight concrete", Comput. Concrete, 19.
17 Wang, J., Zhang, S., Yu, H., Kong, X., Wang, X. and Gu, Z. (2005), "Study of cement mortars modified by emulsifier-free latexes", Cement Concrete Compos., 27, 920-925.
18 Wang, R., Wang, P.M. and Yao, L.J. (2012), "Effect of redispersible vinyl acetate and versatate copolymer powder on flexibility of cement mortar", Constr., Build., Mater., 27, 259-262.   DOI
19 Kaffetzakis, M. and Papanicolaou, C. (2016), "Lightweight aggregate self-compacting Concrete (LWASCC) semi-automated mix design methodology", Constr. Build. Mater., 123, 254-260.   DOI
20 Kabir, S.M.A., Alengaram, U.J., Jumaat, M.Z., Sharmin, A. and Bashar, I.I. (2017), "Performance evaluation and some durability characteristics of environmental friendly palm oil clinker based geopolymer concrete", J. Clean Prod.
21 Karahan, O. and Hossain, K.M.A., Ozbay, E., Lachemi, M. and Sancak, E. (2012), "Effect of metakaolin content on the properties self-consolidating lightweight concrete", Constr. Build. Mater., 31, 320-325.   DOI
22 Karamloo, M., Mazloom, M. and Payganeh, G. (2016a), "Effects of maximum aggregate size on fracture behaviors of self-compacting lightweight concrete", Constr. Build. Mater., 123, 508-515.   DOI
23 Karamloo, M., Mazloom, M. and Payganeh, G. (2016b), "Influences of water to cement ratio on brittleness and fracture parameters of self-compacting lightweight concrete", Eng. Fract. Mech., 168, 227-241.   DOI
24 Karamloo, M., Mazloom, M. and Payganeh, G. (2017), "Effect of size on nominal strength of self-compacting lightweight concrete and self-compacting normal weight concrete: A stress-based approach", Mater. Tod. Commun.
25 Khalid, N.H.A., Hussin, M.W., Ismail, M., Basar, N., Ismail, M.A., Lee, H.S. and Mohamed, A. (2015), "Evaluation of effectiveness of methyl methacrylate as retarder additive in polymer concrete", Constr. Build. Mater., 93, 449-456.   DOI
26 Kong, X., Emmerling, S., Pakusch, J., Rueckel, M. and Nieberle, J. (2015), "Retardation effect of styrene-acrylate copolymer latexes on cement hydration", Cement Concrete Res., 75, 23-41.   DOI
27 Mazloom, M. (2013), "Application of neural networks for predicting the workability of self-compacting concrete", J. Sci. Res. Rep., 2, 429-442.
28 Layssi, H., Ghods, P., Alizadeh, A.R. and Salehi, M. (2015), "Electrical resistivity of concrete", Concrete Int., 41-46.
29 Ma, H. and Li, Z. (2013), "Microstructures and mechanical properties of polymer modified mortars under distinct mechanisms", Constr. Build. Mater., 47, 579-587.   DOI
30 Mazloom, M. (2008), "Estimating long-term creep and shrinkage of high-strength concrete", Cement Concrete Compos., 30, 316-326.   DOI
31 Mazloom, M. and Hatami, H. (2016), "The behavior of self-compacting light weight concrete produced by magnetic water world academy of science, engineering and technology", J. Civil Environ. Struct. Constr. Archit. Eng., 9, 1662-1666.
32 Mazloom, M. and Mahboubi, F. (2017), "Evaluating the settlement of lightweight coarse aggregate in self-compacting lightweight concrete", Comput. Concrete,19(2), 203-210.   DOI
33 Mazloom, M. and Miri, S.M. (2017), "Interaction of magnetic water, silica fume and superplasticizer on fresh and hardened properties of concrete", Adv. Concrete Constr., 5, 87-99.   DOI
34 ASTM C 496 (2002) Standard Test Method for Splitting Tensile Strength of Cylinderical Concrete Specimens, American Society of Testing Materials.
35 Bani Ardalan, R., Joshaghani, A. and Hooton, R.D. (2017), "Workability retention and compressive strength of self-compacting concrete incorporating pumice powder and silica fume", Constr. Build. Mater., 134, 116-122.   DOI
36 BS EN 12390 (2000), Testing Hardened Concrete, Method of Determination of Compressive Strength of Concrete Cubes, British Standards Institution.
37 Bentz, D.P., Snyder, K.A. and Ahmed, A. (2015), "Anticipating the setting time of high-volume fly ash concretes using electrical measurements: Feasibilitystudies using pastes", J. Mater. Civil Eng., 27, 04014129.   DOI
38 Aliabdo, A.A.E. and Abd_Elmoaty, A.E.M. (2012), "Experimental investigation on the properties of polymer modified SCC", Constr. Build. Mater., 34, 584-592.   DOI
39 ASTM C 78 (2002) Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading), ASTM International, West Conshohocken, Pennsylvania, U.S.A.
40 Dave, N., Misra, A.K., Srivastava, A., Sharma, A.K. and Kaushik, S.K. (2017), "Study on quaternary concrete micro-structure, strength, durability considering the influence of multi-factors", Constr. Build. Mater., 139, 447-457.   DOI
41 Hanif, A., Lu, Z., Sun, M., Parthasarathy, P. and Li, Z. (2017), "Green lightweight ferrocement incorporating fly ash cenosphere based fibrous mortar matrix", J. Clean Prod.
42 EFNARC (2002) Specification & Guidlines for Self-Compacting Concrete, European Federation for Specialist Construction Chemicals and Concrete Systems, Norfolk, U.K.
43 Frigione, M. (2013), Concrete with Polymers, 386-436.
44 Ghoddousi, P. and Adelzade Saadabadi, L. (2017), "Pore structure indicators of chloride transport in metakaolin and silica fume self-compacting concrete", J. Civil  Eng., 1-10.
45 Holschemacher, K., Iqbal, S., Ali, A. and Bier, T.A. (2017), "Strengthening of RC beams using lightweight self-compacting cementitious", Compos. Proc. Eng.,172, 369-376.   DOI
46 Hornbostel, K., Larsen, C.K. and Geiker, M.R. (2013), "Relationship between concrete resistivity and corrosion rate-a literature review", Cement Concrete Compos., 39, 60-72.   DOI
47 Hwang, C.L. and Tran, V.A. (2016), "Engineering and durability properties of self-consolidating concrete incorporating foamed lightweight aggregate", J. Mater. Civil  Eng., 28.
48 Brooks, J.J., Megat Johari, M.A. and Mazloom, M. (2000), "Effect of admixtures on the setting times of high-strength concretes", Cement Concrete Compos., 22,293-301   DOI
49 Issa, C.A. and Assaad, J.J. (2016), "Stability and bond properties of polymer-modified self-consolidating concrete for repair applications", Mater. Struct., 50.